- 安装前准备
Sudo apt-get update
Sudo apt-get install g++
Sudo apt-get install gcc
Sudo apt-get install make
禁用默认驱动

/etc/modprobe.d/blacklist.conf
在文件/etc/modprobe.d/blacklist.conf末尾加入
blacklist nouveau
编辑
更新文件

重启,并再次查看

- 安装显卡驱动
1)查看显卡型号

2)下载驱动
https://www.nvidia.cn/geforce/drivers/

NVIDIA-Linux-x86_64-535.146.02.run
3)安装驱动


4)验证

- 安装cuda(V11.7)
- 下载
https://developer.nvidia.com/cuda-toolkit-archive

- 安装

- 配置路径
Sudo nano .bashrc
在文件末尾加入

激活配置文件

- 验证

- 安装cudnn
1)下载

2)解压文件


- 安装框架


- 环境验证

- 训练
测试代码,文件nmist.py(书写数字识别)
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras import models
(X_train, y_train), (X_test, y_test) = tf.keras.datasets.mnist.load_data()
X_train = X_train / 255.0
X_test = X_test / 255.0
X_train = X_train.reshape(-1, 28, 28, 1)
X_test = X_test.reshape(-1, 28, 28, 1)
model = models.Sequential()
model.add(layers.Conv2D(6, (5, 5), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(16, (5, 5), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(120, activation='relu'))
model.add(layers.Dense(84, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))
model.compile(optimizer='SGD',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train, y_train, epochs=5, batch_size=64)
test_loss, test_acc = model.evaluate(X_test, y_test)
print(f'Test accuracy: {test_acc}')


本文指导如何在Linux系统中安装NVIDIA显卡驱动,包括使用apt-get管理软件包、禁用默认驱动、安装CUDA及CUDNN库,最后通过TensorFlow实现MNIST手写数字识别。
1万+





