Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1 ≤ a2 ≤ … ≤ ak).
- The solution set must not contain duplicate combinations.
For example, given candidate set 2,3,6,7
and target 7
,
A solution set is:
[7]
[2, 2, 3]
solution: 递归方法来解决,先排序以确保结果集都是非递减的;解决的关键在于每次递归都从当前位开始遍历,把数添加到sum中去,而不是从当前位的后一位开始,这样能保证重复数字的解决方案存在。
class Solution {
public:
vector<vector<int> > combinationSum(vector<int> &candidates, int target) {
// Note: The Solution object is instantiated only once and is reused by each test case.
vector< vector<int> >result;
vector<int>res;
if( candidates.size() <=0 || target <= 0 )
return result;
sort(candidates.begin(), candidates.end());
int sum = 0;
generateCom(candidates, result, res, 0, sum, target);
return result;
}
void generateCom(vector<int> &candidates, vector< vector<int> >&result, vector<int>&res, int cur, int &sum,int target)
{
if(sum > target)return;
else if(sum == target)
{
result.push_back(res);
return;
}
for(int i = cur; i < candidates.size(); i++)
{
sum += candidates[i];
res.push_back(candidates[i]);
generateCom(candidates, result, res, i, sum, target);
res.pop_back();
sum -= candidates[i];
}
}
};