Given an array S of n integers, find three integers in S such that the sum is closest to a given number, target. Return the sum of the three integers. You may assume that each input would have exactly one solution.
For example, given array S = {-1 2 1 -4}, and target = 1.
The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).
solution ; method1:O(n^3) method. 获取所有已知结果,极其低效,所以改进成第二种方法。
method2:O(n^2)方法,类似twosum方法。
method1:
class Solution {
public:
int threeSumClosest(vector<int> &num, int target) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int size = num.size();
if(size < 3)
return INT_MAX;
int diff = INT_MAX;
int result = 0;
for(int fir = 0; fir < size -2; fir++)
{
int num1 = num[fir];
for(int sec = fir +1; sec < size - 1; sec ++)
{
int num2 = num[sec];
int thi = sec + 1;
while(thi <= size -1)
{
int num3 = num[thi];
int sum = num1 + num2 + num3;
int tempDiff = abs(sum - target);
if(tempDiff < diff)
{
result = sum;
diff = tempDiff;
}
thi ++;
}
}
}
return result;
}
};method2:
class Solution {
public:
int threeSumClosest(vector<int> &num, int target) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int size = num.size();
if(size < 3)
return INT_MAX;
int diff = INT_MAX;
int result = 0;
sort(num.begin(),num.end());
for(int fir = 0; fir < size -2; fir++)
{
int num1 = num[fir];
int start = fir + 1;
int end = size -1;
while(start < end)
{
int sum = num1 + num[start] + num[end];
int tempDiff = abs(sum - target);
if(tempDiff < diff)
{
diff = tempDiff;
result = sum;
}
if(sum == target)
return sum;
else if(sum > target)
end--;
else
start++;
}
}
return result;
}
};

本文介绍了一种高效算法,用于从整数数组中找到三个数,使其和最接近给定的目标值。通过两种方法对比,展示如何将时间复杂度从O(n^3)优化到O(n^2),并提供了详细的C++实现代码。
314

被折叠的 条评论
为什么被折叠?



