Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ? b ? c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)
solution : 转换为twosum问题,遍历数组,以当前数位target,求后续数组中和为-target的两数。
需要注意的地方是target需要跳过重复的数字,求twosum时也要跳过重复数字。
class Solution {
public:
vector< vector<int> > threeSum(vector<int> &num) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
int size = num.size();
vector< vector<int> >result;
vector<int>tri(3,0);
int res = 0;
if(size < 3)
return result;
sort(num.begin(),num.end());
for(int index = 0; index < size-2; index++)
{
if(num[index] == num[index-1])continue;
int res1 = -num[index];
int start = index + 1;
int end = size - 1;
while(start < end)
{
int sum = num[start] + num[end];
if(sum == res1) //found 3 sum
{
tri[0] = num[index];
tri[1] = num[start];
tri[2] = num[end];
result.push_back(tri);
while(num[start] == num[start+1])
start++;
start++;
end --;
res++;
}
else if(sum < res1)
{
start ++;
}
else
{
end --;
}
}
}
return result;
}
};