Function Run Fun
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 6707 | Accepted: 3651 |
Description
We all love recursion! Don't we?
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Consider a three-parameter recursive function w(a, b, c):
if a <= 0 or b <= 0 or c <= 0, then w(a, b, c) returns:
1
if a > 20 or b > 20 or c > 20, then w(a, b, c) returns:
w(20, 20, 20)
if a < b and b < c, then w(a, b, c) returns:
w(a, b, c-1) + w(a, b-1, c-1) - w(a, b-1, c)
otherwise it returns:
w(a-1, b, c) + w(a-1, b-1, c) + w(a-1, b, c-1) - w(a-1, b-1, c-1)
This is an easy function to implement. The problem is, if implemented directly, for moderate values of a, b and c (for example, a = 15, b = 15, c = 15), the program takes hours to run because of the massive recursion.
Input
The input for your program will be a series of integer triples, one per line, until the end-of-file flag of -1 -1 -1. Using the above technique, you are to calculate w(a, b, c) efficiently and print the result.
Output
Print the value for w(a,b,c) for each triple.
Sample Input
1 1 1 2 2 2 10 4 6 50 50 50 -1 7 18 -1 -1 -1
Sample Output
w(1, 1, 1) = 2 w(2, 2, 2) = 4 w(10, 4, 6) = 523 w(50, 50, 50) = 1048576 w(-1, 7, 18) = 1
Source
Pacific Northwest 1999
题目描述了一个递归过程,要求编程实现求此递归函数的功能。
如果直接按照递归定义来写,肯定会TLE,因为递归的过程中会产生很多的递归分支,而递归函数的调用又会完成很多不必要的重复工作。
这里的思想是预存储,典型的用空间换时间。
如果直接按照递归定义计算,计算时严格按照递归定义回溯,每次计算可能都会经历很多次递归调用,可能会重复计算。如果将所有结果都预处理放到数组,递归的过程中,大变量结果由小变量结果得出,只需遍历一遍,便可算出所有结果,而且每个结果的计算只需按照递归定义计算一层。
注意到,递归的过程中始终是向着变量减小的方向,于是可以由变量由小到大遍历一次,算出变量所有情况下的函数结果,存储在数组中。真正求解时,直接返回结果。
代码如下: