Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9], insert and merge [2,5] in
as [1,5],[6,9].
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16], insert and merge [4,9] in
as [1,2],[3,10],[12,16].
This is because the new interval [4,9] overlaps with [3,5],[6,7],[8,10].
和上一题基本相同,不过本身是有序的,需要插入一个新的interval
思路是先把end<new.start的interval先放入,找到第一个end>=new.start的interval,然后在找到第一个start>new.end的interval,放入new,
再把剩余的interval逐个放入
/**
* Definition for an interval.
* public class Interval {
* int start;
* int end;
* Interval() { start = 0; end = 0; }
* Interval(int s, int e) { start = s; end = e; }
* }
*/
public class Solution {
public List<Interval> insert(List<Interval> intervals, Interval newInterval) {
List<Interval> res = new ArrayList<Interval>();
if(intervals.size()<1){
res.add(newInterval);
return res;
}
int i = 0;
while(i<intervals.size()&&intervals.get(i).end<newInterval.start){
res.add(intervals.get(i));
i++;
}
if(i==intervals.size()){
res.add(newInterval);
return res;
}
newInterval.start = Math.min(newInterval.start,intervals.get(i).start);
while(i<intervals.size() && intervals.get(i).start<=newInterval.end)
{
newInterval.end = Math.max(newInterval.end, intervals.get(i).end);
i++;
}
res.add(newInterval);
while(i<intervals.size())
{
res.add(intervals.get(i));
i++;
}
return res;
}
}
本文介绍了一个高效的算法,用于在一个已排序的区间集合中插入一个新的区间,并在必要时进行合并。通过示例说明了如何实现这一过程,确保了新插入的区间能够正确地与现有区间合并。
2094

被折叠的 条评论
为什么被折叠?



