深入 kernel panic 流程

本文详细探讨了Kernel Panic的现象、原因和处理流程。从内核异常、调用栈、关键信息输出到 Panic 流程,分析了如何利用这些信息定位和解决问题。通过对 Panic 输出的解读和调试工具的使用,开发者可以更好地理解和处理内核级别的系统死机问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、前言

我们在项目开发过程中,很多时候会出现由于某种原因经常会导致手机系统死机重启的情况(重启分Android重启跟kernel重启,而我们这里只讨论kernel重启也就是 kernel panic 的情况),死机重启基本算是影响最严重的系统问题了,有稳定复现的,也有概率出现的,解题难度也千差万别,出现问题后,通常我们会拿到类似这样的kernel log信息(下面log仅以调用BUG()为例,其它异常所致的死机log信息会有一些不同之处):

[    2.052157] <2>-(2)[1:swapper/0]------------[ cut here ]------------
[    2.052163] <2>-(2)[1:swapper/0]Kernel BUG at c04289dc [verbose debug info unavailable]
[    2.052169] <2>-(2)[1:swapper/0]Internal error: Oops - BUG: 0 [#1] PREEMPT SMP ARM
[    2.052178] <2>-(2)[1:swapper/0]disable aee kernel api[    3.052192] <2>-(2)[1:swapper/0]Non-crashing CPUs did not react to IPI
[    3.052204] <2>-(2)[1:swapper/0]CPU: 2 PID: 1 Comm: swapper/0 Tainted: G        W      3.18.35+ #3
[    3.052211] <2>-(2)[1:swapper/0]task: df060000 ti: df04a000 task.ti: df04a000
[    3.052227] <2>-(2)[1:swapper/0]PC is at ltr553_i2c_probe+0x94/0x9c
[    3.052233] <2>-(2)[1:swapper/0]LR is at 0x0
[    3.052242] <2>-(2)[1:swapper/0]pc : [<c04289dc>]    lr : [<00000000>]    psr: a0000113
[    3.052242] <2>sp : df04bd30  ip : 00000000  fp : df04bd4c
[    3.052249] <2>-(2)[1:swapper/0]r10: 00000003  r9 : de348fc0  r8 : c0428948
[    3.052255] <2>-(2)[1:swapper/0]r7 : dea1bc00  r6 : dea1bc04  r5 : dea1bc20  r4 : c0b53358
[    3.052262] <2>-(2)[1:swapper/0]r3 : c115ef4c  r2 : 00000000  r1 : 00000000  r0 : de366a00
[    4.354655] <2>-(2)[1:swapper/0] oops_end, 1, 11
[    4.354740] <2>-(2)[1:swapper/0]Kernel panic - not syncing: Fatal exception

这是linux 内核在死机之前输出的相关重要信息,包括PC指针、调用栈等在内的非常重要的便于Debug的线索,比如我们可以借助GUN toolsadd2Line)工具结合内核符号映射表vmlinux来定位当前PC指针所在的代码具体行数(定位到出错代码行并不意味着就找到了问题的根本原因跟修复异常,这个需要根据异常的复杂程度而论)。深入理解这些关键打印log信息的含义和机制非常有助于我们对于此类死机问题的定位和分析(对于内存被踩、硬件不稳定导致的一类问题分析有局限性),这也是我们需要深入学习内核异常流程的初衷。

这里我们必须弄清楚几个问题:

  • 这些死机前留下的关键register信息是怎么来的,有什么用,具体含义是什么?
  • 如何利用这些遗留的线索找到出问题代码具体在哪支文件,在哪一行?
  • 内核发生致命异常到死机的总流程是怎样的,类似死机问题应该如何着手分析?

为此,本文就从最常见的主动触发BUG()为例解析上面的疑问及分析整个kernel panic流程。

二、什么是BUG() ?

有过驱动调试经验的人肯定都知道这个东西,这里的BUG跟我们一般认为的“软件缺陷”可不是一回事,这里说的BUG()其实是linux kernel中用于拦截内核程序超出预期的行为,属于软件主动汇报异常的一种机制。这里有个疑问,就是什么时候会用到呢?一般来说有两种用到的情况,一是软件开发过程中,若发现代码逻辑出现致命fault后就可以调用BUG()kernel死掉(类似于assert),这样方便于定位问题,从而修正代码执行逻辑;另外一种情况就是,由于某种特殊原因(通常是为了debug而需抓ramdump),我们需要系统进入kernel panic的情况下使用.

  • 原形是什么?

BUG()BUG_ON(1)其实本质是一回事,后者只是在前者的基础上做了简单的封装而已,BUG()的实现 本质是埋入一条未定义指令:0xe7f001f2,触发ARM发起Undefined Instruction异常(PS:ARM有分10种异常类型,详细可以复习ARM异常模型章节).

<kernel-3.18/arch/arm/include/asm/bug.h>
#define BUG_INSTR_VALUE 0xe7f001f2
#define BUG_INSTR(__value) __inst_arm(__value)
#define BUG() _BUG(__FILE__, __LINE__, BUG_INSTR_VALUE)
#define _BUG(file, line, value) __BUG(file, line, value)
#define __BUG(__file, __line, __value)              \
do {                                \
    asm vol
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值