"""
Created on Tue Oct 11 19:05:33 2016
@author: Administrator
"""
from numpy import *
import operator
from os import listdir
def creatDataSet():
group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels=['A','A','B','B']
return group,labels
def classify0(inX,dataSet,labels,k):
dataSetSize=dataSet.shape[0]
diffMat=tile(inX,(dataSetSize,1)) -dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
distances=sqDistances**0.5
sortedDistIndicies=distances.argsort()
classCount={}
for i in range (k):
voteIlabel=labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount [0] [0]
def file2matrix(filename):
fr=open(filename)
arrayOLines=fr.readlines()
numberOfLines=len(arrayOLines)
returnMat=zeros((numberOfLines,3))
classLAbelVector = []
index = 0
for line in arrayOLines:
line = line.strip()
listFormLine = line.split('\t')
returnMat [index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector
def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals,(m,1))
normDataSet = normDataSet/title(ranges,(m,1))
return normDataSet, ranges,minvals
def datingClassTest():
hoRatio = 0.10
datingDataMat,DatingLabels = file2matrix('datingTestSet.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestvecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classfy0(normMat [i,:],normMat [numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print "the classifer came back with : %d, the real answer is: %d" % (classifierResult,datingLabels[i])
if (classifierResult != datingLabels[i]): errorCount +=1.0
print "the total error rate is : %f " % (errorCount/float(numTestVecs))
def classifyPerson():
resultList = ['not at all','in small doses','in large doses']
ffMiles = float(raw_input("frequent flier miles earned per year:"))
percentTats = float(raw_input("percentage of time spent playing video games:"))
iceCream = float(raw_input("liters of ice cream consumed per week:"))
datingDataMat,datingLabels = file2matrix('datingTestSet.txt')
normMat,ranges,minVals = autoNorm(datingDataMat)
inArr = array([ffMiles,percentTats,iceCream])
classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
print "You will probably like this person: ",resultList[classifierResult -1]
def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
linestr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect
def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits')
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
hwLabel.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits')
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0]
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat,hwLabels,3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult,classNumStr)
if(classifierResult != classNumStr): errorCount +=1.0
print "\nthe total number of error is:%d" % errorCount
print "\nthe total error rate is:%f" % (errorCount/float(mTest))