Heron and His Triangle
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 923 Accepted Submission(s): 432
Problem Description
A triangle is a Heron’s triangle if it satisfies that the side lengths of it are consecutive integers t−1, t, t+ 1 and thatits area is an integer. Now, for given n you need to find a Heron’s triangle associated with the smallest t bigger
than or equal to n.
than or equal to n.
Input
The input contains multiple test cases. The first line of a multiple input is an integer T (1 ≤ T ≤ 30000) followedby T lines. Each line contains an integer N (1 ≤ N ≤ 10^30).
Output
For each test case, output the smallest t in a line. If the Heron’s triangle required does not exist, output -1.
Sample Input
4 1 2 3 4
Sample Output
4 4 4 4
Source
Recommend
jiangzijing2015
题目大意求10^30以内的满足三条边为t-1,t,t+1的海伦三角形,给出一个数字N,输出大于等于N的t的最小值
使用java大数类打表可以轻松过关
import java.math.BigInteger;
import java.util.Scanner;
public class Main {
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
int c = sc.nextInt();
for(int j = 0; j < c; j ++)
{
BigInteger n = sc.nextBigInteger();
BigInteger fz = BigInteger.ONE;
BigInteger fm = BigInteger.valueOf(2);
for(BigInteger i = BigInteger.valueOf(2); i.compareTo(n) <= 0; i = i.add(BigInteger.ONE))
{
fz = fz.multiply(i.multiply(BigInteger.valueOf(2)).subtract(BigInteger.ONE));
fm = fm.multiply(i.multiply(BigInteger.valueOf(2)));
}
BigInteger gcdd = fz.gcd(fm);
fm = fm.divide(gcdd);
fz = fz.divide(gcdd);
System.out.println(fz+"/"+fm);
}
}
}