HDU6222 海伦和他的三角形 (java大数类)

Heron and His Triangle

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 923    Accepted Submission(s): 432


Problem Description
A triangle is a Heron’s triangle if it satisfies that the side lengths of it are consecutive integers t−1, t, t+ 1 and thatits area is an integer. Now, for given n you need to find a Heron’s triangle associated with the smallest t bigger
than or equal to n.
 

Input
The input contains multiple test cases. The first line of a multiple input is an integer T (1 ≤ T ≤ 30000) followedby T lines. Each line contains an integer N (1 ≤ N ≤ 10^30).
 

Output
For each test case, output the smallest t in a line. If the Heron’s triangle required does not exist, output -1.
 

Sample Input
 
 
4 1 2 3 4
 

Sample Output
 
 
4 4 4 4
 

Source
 

Recommend
jiangzijing2015


题目大意求10^30以内的满足三条边为t-1,t,t+1的海伦三角形,给出一个数字N,输出大于等于N的t的最小值

使用java大数类打表可以轻松过关



import java.math.BigInteger;
import java.util.Scanner;

public class Main {
    public static void main(String[] args)
    {
        Scanner sc = new Scanner(System.in);
        int c = sc.nextInt();
        for(int j = 0; j < c; j ++)
        {
            BigInteger n = sc.nextBigInteger();
            BigInteger fz = BigInteger.ONE;
            BigInteger fm = BigInteger.valueOf(2);
            for(BigInteger i = BigInteger.valueOf(2); i.compareTo(n) <= 0; i = i.add(BigInteger.ONE))
            {
                fz = fz.multiply(i.multiply(BigInteger.valueOf(2)).subtract(BigInteger.ONE));
                fm = fm.multiply(i.multiply(BigInteger.valueOf(2)));

            }
            BigInteger gcdd = fz.gcd(fm);
            fm = fm.divide(gcdd);
            fz = fz.divide(gcdd);
            System.out.println(fz+"/"+fm);
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值