Wavio Sequence
Input:StandardInput
Output: Standard Output
Time Limit: 2 Seconds
Wavio is a sequence of integers. It has some interestingproperties.
· Wavio is of odd length i.e. L = 2*n+ 1.
· The first (n+1) integers ofWavio sequence makes a strictly increasing sequence.
· The last (n+1) integers of Waviosequence makes a strictly decreasing sequence.
· No two adjacent integers are same in aWavio sequence.
For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is an Waviosequence of length 9. But 1, 2, 3, 4, 5, 4, 3, 2, 2 is not avalid wavio sequence. In this problem, you will be given a sequence ofintegers. You have to find out the length of the longest Wavio sequence whichis a subsequence of the given sequence. Consider, the given sequence as :
1 2 3 2 1 2 3 4 32 1 5 4 1 2 3 2 2 1.
Here the longest Wavio sequence is : 1 2 3 4 5 4 3 2 1. So, the outputwill be 9.
Input
The input filecontains less than 75 test cases. The description of each test case isgiven below: Input is terminated by end of file.
Each set starts with a postiveinteger, N(1<=N<=10000). In next few lines there will be Nintegers.
Output
For each set of input print the length of longest waviosequence in a line.
Sample Input Output for Sample Input
10 1 2 3 4 5 4 3 2 1 10 19 1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1 5 1 2 3 4 5 | 9 9 1
|
Problemsetter: Md. Kamruzzaman, Member of Elite Problemsetters' Panel
计算每个点的最长增序列和最长减序列
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <queue>
using namespace std;
#define maxn 10005
#define inf 0x7ffffff
pair <int ,int > p;
int arr[maxn];
int LIS[maxn];
int LDS[maxn];
int dp[maxn];
int n;
//int cmpD(Node a,Node b){
// return a.h > b.h;
//}
//int cmpI(Node a,Node b){
// return a.h < b.h;
//}
int main()
{
while(scanf("%d",&n) != EOF){
for(int i = 1; i <= n; i++){
scanf("%d",&arr[i]);
}
fill(dp,dp+n+1,inf);
dp[0] = -inf +1;
for(int i = 1; i <= n; i++){
LIS[i] = lower_bound(dp,dp+n,arr[i])-dp;
dp[LIS[i]] = arr[i];
}
fill(dp,dp+n+1,inf);
dp[0] = -inf +1;
for(int i = n; i >= 0; i--){
LDS[i] = lower_bound(dp,dp+n,arr[i])-dp;
dp[LDS[i]] = arr[i];
}
int ans = -inf;
for(int i = 1; i <= n; i++){
ans = max(ans, min(LIS[i],LDS[i]));
}
printf("%d\n",2*ans - 1);
}
return 0;
}