Leetcode48. 旋转图像
题目:
给定一个 n × n 的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
说明:
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。
示例 1:
给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
示例 2:
给定 matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],
原地旋转输入矩阵,使其变为:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
题解:
1.转置+翻转
2。旋转
scala代码:
/**
* 转置+翻转
*
* @param matrix
*/
def rotate1(matrix: Array[Array[Int]]): Unit = {
val n = matrix.length
//矩阵转置
for (i <- 0 until n) {
for (j <- i until n) {
val temp = matrix(j)(i)
matrix(j)(i) = matrix(i)(j)
matrix(i)(j) = temp
}
}
//翻转
for (i <- 0 until n) {
for (j <- 0 until n / 2) {
val temp = matrix(i)(j)
matrix(i)(j) = matrix(i)(n - j - 1)
matrix(i)(n - j - 1) = temp
}
}
}
/**
* 旋转
*
* @param matrix
*/
def rotate2(matrix: Array[Array[Int]]): Unit = {
val n = matrix.length
for (i <- 0 until (n / 2 + n % 2)) {
for (j <- 0 until n / 2) {
val nums = new Array[Int](4)
var row = i
var col = j
for (i <- 0 until 4) {
nums(i) = matrix(row)(col)
val temp = row
row = col
col = n - 1 - temp
}
for (i <- 0 until 4) {
matrix(row)(col) = nums((i + 3) % 4)
val temp = row
row = col
col = n - 1 - temp
}
}
}
}
/**
* 单次循环
*
* @param matrix
*/
def rotate3(matrix: Array[Array[Int]]): Unit = {
val n = matrix.length
for (i <- 0 until (n + 1) / 2) {
for (j <- 0 until n / 2) {
val temp = matrix(n - 1 - j)(i)
matrix(n - 1 - j)(i) = matrix(n - 1 - i)(n - j - 1)
matrix(n - 1 - i)(n - j - 1) = matrix(j)(n - 1 - i)
matrix(j)(n - 1 - i) = matrix(i)(j)
matrix(i)(j) = temp
}
}
}
java代码:
public static int[][] rotate(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < (n + 1) / 2; i++) {
for (int j = 0; j < n / 2; j++) {
int tmp = matrix[j][n - i - 1];
matrix[j][n - i - 1] = matrix[i][j];
matrix[i][j] = matrix[n - j - 1][i];
matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1];
matrix[n - i - 1][n - j - 1] = tmp;
}
}
return matrix;
}