Speaker Recognition: GMM-UBM

本文探讨了GMM-UBM在文本独立的SpeakerRecognition中的关键作用,尤其是在数据有限的情况下如何通过调整参数建立IndividualSpeakerModeling。文章讨论了UBM模型和IndividualSpeakerModeling的结构,以及采用MAP方法进行参数调整的有效性。同时,提出了针对GMM-UBM计算密集和phoneticmismatch问题的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. WHY --- 为什么需要使用GMM-UBM来建立Individual Speaker Modeling?

"Usually, we do not have much data from a single speaker. In most practical cases related to text-independent scenarios, the enrollment data is at best in the order of a minute." “Assuming that the number of Gaussians used in the mixture mode, Γ ∼100,
then it is easy to understand why there is no where close to enough data to be able to estimate the mixture parameters for the speaker.”  

 

2. WHAT --- UBM模型和Individual Speaker Modeling长什么样?

- the GMM are usually diagonal.

- Practice has shown that it is advantageous to train two separate background models, one for female and the other one for          male speakers.

- the number of Gaussians used in a UBM是多少?

 

3. HOW --- 怎么基于UBM模型来建立Individual Speaker Modeling?

- 调整什么参数?

 Only means adapted  或者  All parameters adapted

- 用什么方法调整?

通常是MAP方法,“For very short enrollment utterances (a few seconds), some other methods have shown to be more effective. Maximum likelihood linear regression (MLLR) ”

 

4. Advanced Topic

- 怎么减少GMM-UBM的computationally intensive

- 怎么解决GMM-UBM的phonetic mismatch problem

 

参考:

[1] An Overview of Text-Independent Speaker Recognition: from Features to Supervectors

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值