Question 1
The file contains the adjacency list representation of a simple undirected graph. There are 200 vertices labeled 1 to 200. The first column in the file represents the vertex label, and the particular row (other entries except the first column) tells all the vertices that the vertex is adjacent to. So for example, the
6th
row looks like : "6 155 56 52 120 ......". This just means that the vertex with label 6 is adjacent to (i.e., shares an edge with) the vertices with labels 155,56,52,120,......,etc
Your task is to code up and run the randomized contraction algorithm for the min cut problem and use it on the above graph to compute the min cut. (HINT: Note that you'll have to figure out an implementation of edge contractions. Initially, you might want to do this naively, creating a new graph from the old every time there's an edge contraction. But you should also think about more efficient implementations.) (WARNING: As per the video lectures, please make sure to run the algorithm many times with different random seeds, and remember the smallest cut that you ever find.) Write your numeric answer in the space provided. So e.g., if your answer is 5, just type 5 in the space provided.
图结构实现:
public class Graphs<T>
{
public enum GraphKind { DG, DN, UDG, UDN };
private GraphKind kind;
private Dictionary<T,Vertex<T>> vertices;
public Dictionary<T, List<T>> edges;
private List<Edge> edgesList;
public Graphs(GraphKind kind)
{
this.kind = kind;
vertices = new Dictionary<T, Graphs<T>.Vertex<T>>();
edges = new Dictionary<T, List<T>>();
edgesList = new List<Graphs<T>.Edge>();
}
private bool contains(T t)
{
return vertices.ContainsKey(t);
}
private Vertex<T> find(T t)
{
if (vertices.ContainsKey(t))
return vertices[t];
return null;
}
public void addEdge(T from, T to)
{
Vertex<T> fromVer = find(from);
if (fromVer == null) return;
//throw new ArgumentException("head vertex not exist!");
Vertex<T> toVer = find(to);
if (toVer == null) return;
//throw new ArgumentException("tail vertex not exist!");
if (edges.ContainsKey(from))
{
edges[from].Add(to);
}
else
{
edges.Add(from, new List<T>());
edges[from].Add(to);
}
Edge e = new Graphs<T>.Edge(from, to);
edgesList.Add(e);
addDirectedEdge(fromVer, toVer);
if (!from.Equals(to))
addDirectedEdge(toVer, fromVer);
}
public void addDirectedEdge(Vertex<T> fromVer, Vertex<T> toVer)
{
if (fromVer.firstEdge == null)
{
fromVer.firstEdge = new Node(toVer);
}
else
{
Node tmp, node = fromVer.firstEdge;
do
{
//allow add parallel edges and self-loop
if (node.adj.id.Equals(toVer.id)) return;
// throw new ArgumentException("add edges repeatedly!");
tmp = node;
node = node.next;
} while (node != null);
tmp.next = new Node(toVer);
}
}
public void addVertex(T t)
{
Vertex<T> v = new Vertex<T>(t);
if (contains(t))
throw new ArgumentException("add node repeatedly!");
vertices.Add(t, v);
}
public class Vertex<TValue>
{
public TValue id;
public Node firstEdge;
public bool visited;
public Vertex(TValue id)
{
this.id = id;
}
}
public class Node
{
public Vertex<T> adj;
public Node next;
public Node(Vertex<T> v)
{
adj = v;
}
}
public class Edge
{
public T head;
public T tail;
public int eWeight;
//public int nextEdge;
public Edge(T v1, T v2)
{
this.head = v1;
this.tail = v2;
}
}
}
图的邻接表表示:
public class GraphList<T>
{
private Dictionary<T, List<T>> vertices;
private List<T> index;
private Graphs<T> g;
public GraphList(Graphs<T> g)
{
this.g = g;
init();
}
private void init()
{
initVertices();
index = new List<T>();
foreach (T t in vertices.Keys)
{
index.Add(t);
}
}
public void initVertices()
{
vertices = new Dictionary<T, List<T>>();
foreach (T t in g.edges.Keys)
{
vertices.Add(t, new List<T>());
foreach (T j in g.edges[t])
{
vertices[t].Add(j);
}
}
}
public bool Contains(T t)
{
return vertices.ContainsKey(t);
}
public void removeVertex(T t)
{
if (vertices.ContainsKey(t))
{
vertices.Remove(t);
index.Remove(t);
}
}
public void addVertex(T t)
{
if (Contains(t))
throw new ArgumentException("add node repeatedly!");
vertices.Add(t, new List<T>());
index.Add(t);
}
public void addNode(T from, T to)
{
if (Contains(from))
{
vertices[from].Add(to);
}
}
public void removeNode(T from, T to)
{
if (Contains(from))
{
while (vertices[from].IndexOf(to) > -1)
{
vertices[from].Remove(to);
}
}
}
public void removeAllThisNode(T t)
{
foreach (T tv in vertices.Keys)
{
removeNode(tv, t);
}
}
public void mergeVertices(T t1, T t2)
{
/* attach t2's nodes to t1
* attach t1 to t2's nodes
* delete t2 from vertices and other vertices' nodes
*/
mergeVerticesNodes(t1, t2);
removeVertex(t2);
removeAllThisNode(t2);
}
private void mergeVerticesNodes(T t1, T t2)
{
/* attach t2's nodes to t1
* attach t1 to t2's nodes
*/
foreach (T t in vertices[t2])
{
//self-loop
if(t.Equals(t1)) continue;
vertices[t1].Add(t);
vertices[t].Add(t1);
}
}
public void RandomContraction()
{
init();
int from=2, to=4;
//mergeVertices(index[1], index[3]);
while (index.Count > 2)
{
from = RandomUtil.Random(0, index.Count);
//if (from == 199)
//Console.WriteLine();
to = RandomUtil.Random(0, vertices[index[from]].Count);
//Console.WriteLine("merge vertex{0} and vertex{1}", index[from], vertices[index[from]][to]);
mergeVertices(index[from], vertices[index[from]][to]);
}
}
public int min = 200;
public override string ToString()
{
StringBuilder sb = new StringBuilder("\r\n");
int count = 0;
foreach (T t in vertices.Keys)
{
count = 0;
sb.Append(t).Append(":");
foreach (T j in vertices[t])
{
count++;
sb.Append(j).Append(" ");
}
sb.Append("\n");
//Console.WriteLine("{0}:{1}", t, count);
if(min>count)
min = count;
sb.Append(count).Append("\r\n");
}
//Console.WriteLine();
return sb.ToString();
}
public class Vertex<TValue>
{
public TValue id;
public Node firstEdge;
public bool visited;
public Vertex(TValue id)
{
this.id = id;
}
}
public class Node
{
public Vertex<T> adj;
public Node next;
public Node(Vertex<T> v)
{
adj = v;
}
}
}
结果再次就不公布了