HSV颜色直方图

本文探讨了HSV颜色直方图在图像处理中的重要性,指出颜色小区间数量对分辨能力和计算效率的影响。通过选择数值最大的bin构建图像特征,可以降低直方图对噪声的敏感性并可能提升检索效果。介绍了Matlab实现直方图过程中的位操作和归一化,并提供了原图和直方图的对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

颜色特征是在图像检索中应用最为广泛的视觉特征,主要原因在于颜色往往和图像中所包含的物体或场景十分相关。此外,与其他的视觉特征相比,颜色特征对图像本身的尺寸、方向、视角的依赖性较小,从而具有较高的鲁棒性。

面向图像检索的颜色特征的表达涉及到若干问题。首先,我们需要选择合适的颜色空间来描述颜色特征;其次,我们要采用一定的量化方法将颜色特征表达为向量的形式;最后,还要定义一种相似度(距离)标准用来衡量图像之间在颜色上的相似性。在本节中,我们将主要讨论前两个问题,并介绍颜色直方图、颜色矩、颜色集、颜色聚合向量以及颜色相关图等颜色特征的表示方法。

1 颜色直方图
颜色直方图是在许多图像检索系统中被广泛采用的颜色特征。它所描述的是不同色彩在整幅图像中所占的比例,而并不关心每种色彩所处的空间位置,即无法描述图像中的对象或物体。颜色直方图特别适于描述那些难以进行自动分割的图像。

当然,颜色直方图可以是基于不同的颜色空间和坐标系。最常用的颜色空间是RGB颜色空间,原因在于大部分的数字图像都是用这种颜色空间表达的。然而,RGB空间结构并不符合人们对颜色相似性的主观判断。因此,有人提出了基于HSV空间、Luv空间和Lab空间的颜色直方图,因为它们更接近于人们对颜色的主观认识。其中HSV空间是直方图最常用的颜色空间。它的三个分量分别代表色彩(Hue)、饱和度(Saturation)和值(Value)。

计算颜色直方图需要将颜色空间划分成若干个小的颜色区间,每个小区间成为直方图的一个bin。这个过程称为颜色量化(color quantization)。然后,通过计算颜色落在每个小区间内的像素数量可以得到颜色直方图。颜色量化有许多方法,例如向量量化、聚类方法或者神经网络方法。最为常用的做法是将颜色空间的各个分量(维度)均匀地进行划分。相比之下,聚类算法则会考虑到图像颜色特征在整个空间中的分布情况,从而避免出现某些bin中的像素数量非常稀疏的情况,使量化更为有效。另外,如果图像是RGB格式而直方图是HSV空间中的,我们可以预先建立从量化的RGB空间到量化的HSV空间之间的查找表(look-up table),从而加快直方图的计算过程。

上述的颜色量化方法会产生一定的
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值