[LeetCode]Minimum Window Substring

本文介绍了一种寻找字符串S中包含字符串T所有字符的最小子串的高效算法。通过使用滑动窗口技巧,并结合计数表来跟踪所需字符的状态,实现了时间复杂度为O(n)的解决方案。
class Solution {
//need2FT + hasFT + two pointer + count(check if satisfied)
//O(n)
public:
	string minWindow(string S, string T) {
		// Start typing your C/C++ solution below
		// DO NOT write int main() function
		int lenT = T.size();
		int lenS = S.size();
		if(lenT <= 0 || lenT > lenS) return string("");//illegal input
		int need2FT[256] = {0};
		int hasFT[256] = {0};
		for (int i = 0; i < lenT; ++i)//init need2FT 
			need2FT[T[i]]++;
		int start, end;//two pointer to sliding window
		start = end = 0;
		int count = 0;
		int minStart, minEnd, minLen;
		minLen = INT_MAX;
		for ( ; end < lenS; ++end)
		{
			if(0 == need2FT[S[end]]) continue;//unrelated character
			hasFT[S[end]]++;
			if (hasFT[S[end]] <= need2FT[S[end]])
				count++;
			if (count == lenT)//maintain the minimum sliding window
			{
				while (hasFT[S[start]] > need2FT[S[start]] || 0 == need2FT[S[start]])
				{
					if(0 != need2FT[S[start]])
						hasFT[S[start]]--;
					start++;
					if(start >= lenS)
						break;
				}
				int newWinLen = end-start+1;
				if (newWinLen < minLen)
				{
					minStart = start; 
					minEnd = end;
					minLen = newWinLen;
				}
			}
			if(start >= lenS) break;
			
		}
		if(minLen == INT_MAX) return string("");
		//then return the qualified sliding window
		return S.substr(minStart, minLen);
	}
};

second time

class Solution {
public:
    string minWindow(string S, string T) {
        // Start typing your C/C++ solution below
        // DO NOT write int main() function
        vector<int> cntTable(256, 0);
        vector<int> checkTable(256, 0);
        for(int i = 0; i < T.size(); ++i) checkTable[T[i]]++;
        //find the first window
        int validCnt = 0;
        int end;
        for(end = 0; end < S.size(); ++end)
        {
            if(cntTable[S[end]] < checkTable[S[end]]) validCnt++;
            cntTable[S[end]]++;
            if(validCnt == T.size()) break;
        }
        if(end == S.size()) return "";
        int minStart = 0;
        while(minStart < S.size() && cntTable[S[minStart]] > checkTable[S[minStart]]) cntTable[S[minStart++]]--;
        int minEnd = end;
        //try to find a minimum one
        int curStart = minStart;
        for(int i = minEnd+1; i < S.size(); ++i)
        {
            cntTable[S[i]]++;
            int newStart = curStart;
            while(cntTable[S[newStart]] > checkTable[S[newStart]])
            {
                cntTable[S[newStart]]--;
                newStart++;
            }
            curStart = newStart;
            if(i-newStart < minEnd-minStart) minStart = newStart, minEnd = i;
        }
        
        return S.substr(minStart, minEnd-minStart+1);
    }
};


这个是完整源码 python实现 Django 【python毕业设计】基于Python的天气预报(天气预测分析)(Django+sklearn机器学习+selenium爬虫)可视化系统.zip 源码+论文+sql脚本 完整版 数据库是mysql 本研究旨在开发一个基于Python的天气预报可视化系统,该系统结合了Django框架、sklearn机器学习库和Selenium爬虫技术,实现对天气数据的收集、分析和可视化。首先,我们使用Selenium爬虫技术从多个天气数据网站实时抓取气象数据,包括温度、湿度、气压、风速等多项指标。这些数据经过清洗和预处理后本研究旨在开发一个基于Python的天气预报可视化系统,该系统结合了Django框架、sklearn机器学习库和Selenium爬虫技术,实现对天气数据的收集、分析和可视化。首先,我们使用Selenium爬虫技术从多个天气数据网站实时抓取气象数据,包括温度、湿度、气压、风速等多项指标。这些数据经过清洗和预处理后,将其存储在后端数据库中,以供后续分析。 其次,采用s,将其存储在后端数据库中,以供后续分析。 其次,采用sklearn机器学习库构建预测模型,通过时间序列分析和回归方法,对未来天气情况进行预测。我们利用以往的数据训练模型,以提高预测的准确性。通过交叉验证和超参数优化等技术手段,我们优化了模型性能,确保其在实际应用中的有效性和可靠性。 最后,基于Django框架开发前端展示系统,实现天气预报的可视化。用户可以通过友好的界面查询实时天气信息和未来几天内的天气预测。系统还提供多种图表类型,包括折线图和柱状图,帮助用户直观理解天气变化趋势。 本研究的成果为天气预报领域提供了一种新的技术解决方案,不仅增强了数据获取和处理的效率,还提升了用户体验。未来,该系统能够扩展至其他气象相关的应用场景,为大众提供更加准确和及时的气象服务。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI记忆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值