class Solution {
//more detail refer to: http://fisherlei.blogspot.com/2012/12/leetcode-median-of-two-sorted-arrays.html
//using the method of getting the kth number in the two sorted array to solve the median problem
//divide-and-conquer
//very clean and concise
public:
double findMedianSortedArrays(int A[], int m, int B[], int n) {
if((n+m)%2 ==0)
{
return (GetMedian(A,m,B,n, (m+n)/2) + GetMedian(A,m,B,n, (m+n)/2+1))/2.0;
}
else
return GetMedian(A,m,B,n, (m+n)/2+1);
}
int GetMedian(int a[], int n, int b[], int m, int k)//get the kth number in the two sorted array
{
//assert(a && b);
if (n <= 0) return b[k-1];
if (m <= 0) return a[k-1];
if (k <= 1) return min(a[0], b[0]);
//a: section1 section2
//b: section3 section4
if (b[m/2] >= a[n/2])
{
if ((n/2 + 1 + m/2) >= k)
return GetMedian(a, n, b, m/2, k);//abort section 4
else
return GetMedian(a + n/2 + 1, n - (n/2 + 1), b, m, k - (n/2 + 1)); //abort section 1
}
else
{
if ((m/2 + 1 + n/2) >= k)
return GetMedian( a, n/2,b, m, k);//abort section 2
else
return GetMedian( a, n, b + m/2 + 1, m - (m/2 + 1),k - (m/2 + 1));//abort section 3
}
}
};
second time
class Solution {
public:
int GetKthNumber(int A[], int m, int B[], int n, int k)
{
//terminate case
if(m <= 0) return B[k];
if(n <= 0) return A[k];
if(k <= 0) return min(A[0], B[0]);
//recursion
//A:s1,median,s2
//B:s3,median,s4
if(A[m/2] > B[n/2])//s2>s3
{
if(m/2+n/2+1 >= k+1)
{
//A:s1
//B:s3,median,s4
GetKthNumber(A, m/2, B, n, k);
}
else
{
//A:s1,median,s2
//B:s4
GetKthNumber(A, m, B+(n/2+1), n-(n/2+1), k-(n/2+1));
}
}
else//A[m/2] < B[n/2]
{
if(m/2+n/2+1 >= k+1)
GetKthNumber(A, m, B, n/2, k);
else
GetKthNumber(A+(m/2+1), m-(m/2+1), B, n, k-(m/2+1));
}
}
double findMedianSortedArrays(int A[], int m, int B[], int n) {
// Start typing your C/C++ solution below
// DO NOT write int main() function
if((m+n)%2 == 0)//even
return (double)(GetKthNumber(A, m, B, n, (m+n)/2-1)+GetKthNumber(A, m, B, n, (m+n)/2))/2.0;
else
return (double)GetKthNumber(A, m, B, n, (m+n)/2);
}
};
本文介绍了一种通过获取两个已排序数组中的第k个数来解决中位数问题的方法,利用分治策略实现算法的简洁性和高效性。详细解释了如何在已排序数组中定位特定位置的元素,进而计算中位数,适用于数组长度为偶数或奇数的情况。
500

被折叠的 条评论
为什么被折叠?



