ChatGPT理论分析

部署运行你感兴趣的模型镜像

  团队模型、论文、博文、直播合集,点击此处浏览

一、背景

        这里我就直接贴上跟ChatGPT的对话作为背景输入,说真的,它的回答比我写的还要专业,具体见如下截图:

二、原理

        从官网介绍可以看到,ChatGPT与InstructGPT是同源的模型。那么接下来我们来看下什么是InstructGPT。从字面上来看,顾名思义,它就是指令式的GPT,“which is trained to follow an instruction in a prompt and provide a detailed response”。接下来我们来看下InstructGPT论文[1]中的主要原理:

从该图可以看出,InstructGPT是基于GPT-3模型训练出来的,具体步骤如下:

步骤1.)从GPT-3的输入语句数据集中采样部分输入,基于这些输入,采用人工标注完成希望得到输出结果与行为,然后利用这些标注数据进行GPT-3有监督的训练。该模型即作为指令式GPT的冷启动模型。

步骤2.)在采样的输入语句中,进行前向推理获得多个模型输出结果,通过人工标注进行这些输出结果的排序打标。最终这些标注数据用来训练reward反馈模型。

步骤3.)采样新的输入语句,policy策略网络生成输出结果,然后通过reward反馈模型计算反馈,该反馈回过头来作用于policy策略网络。以此反复,这里就是标准的reinforcement learning强化学习的训练框架了。

        所以总结起来ChatGPT(对话GPT)其实就是InstructGPT(指令式GPT)的同源模型,然后指令式GPT就是基于GPT-3,先通过人工标注方式训练出强化学习的冷启动模型与reward反馈模型,最后通过强化学习的方式学习出对话友好型的ChatGPT模型。如下是论文中相应对话友好型的定量结果(其中PPO-ptx曲线就是InstructGPT模型),可以看到在回答友好型上InstructGPT是远超原始GPT的:

        ChatGPT它非常擅长对话、情感分析、文本生成、摘要提取等,有了这些直接打开了更广阔的应用面。可想而知,如若在垂直领域做定向训练,它将会发挥出更极致的性能,即可作咨询用途,同时也可以辅助创作(这将颠覆很多行业的工作方式)等等。

        效果是非常惊艳的,使用完之后的体感是这应该能辅助到各行各业中,应用空间无限大,这类技术可能会成为未来AI系统的基石应用之一。

三、其他

        文生图体验,文章《人工智能内容生成元年—AI绘画原理解析》中已介绍到Midjourney的用户通过该文生图的能力,在美国科罗拉多州举办的艺术博览会,《太空歌剧院》的画作获得数字艺术类别冠军。相应参与界面如下:

四、文献

[1]InstructGPT:https://arxiv.org/abs/2203.02155

您可能感兴趣的与本文相关的镜像

Qwen3-8B

Qwen3-8B

文本生成
Qwen3

Qwen3 是 Qwen 系列中的最新一代大型语言模型,提供了一整套密集型和专家混合(MoE)模型。基于广泛的训练,Qwen3 在推理、指令执行、代理能力和多语言支持方面取得了突破性进展

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI记忆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值