PAT乙级1001害死人不偿命的(3n+1)猜想

本文探讨了卡拉兹猜想的数学背景,并使用C语言实现了一个程序,该程序能够计算任意不超过1000的正整数按照卡拉兹猜想规则到达1所需的步数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:
卡拉兹(Callatz)猜想:

对任何一个正整数 n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把 (3n+1) 砍掉一半。这样一直反复砍下去,最后一定在某一步得到 n=1。卡拉兹在 1950 年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证 (3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过 1000 的正整数 n,简单地数一下,需要多少步(砍几下)才能得到 n=1?

输入格式:
每个测试输入包含 1 个测试用例,即给出正整数 n 的值。

输出格式:
输出从 n 计算到 1 需要的步数。

输入样例:
3
输出样例:
5
代码如下:

#include <stdio.h>
int main()
{
        int n,i;
        int flag=0;
        scanf("%d",&n);
        while(n!=1)
        {
            if(n%2==0)
            {
                n=n/2;
                flag++;
            }
            else if(n%2!=0)
            {
                n=3*n+1;
                n=n/2;
                flag++;
            }
        }
        printf("%d\n",flag);

    return 0;
}

来总结一下:
1)刚开始还是用c在写,后来发现c++比c好用多了。。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值