题解: HDU 4004 The Frog's Games (二分搜索)

这篇博客介绍了如何利用二分搜索算法解决铁蛙三项赛中的青蛙跳河问题。青蛙需要在不超过m次跳跃的情况下,跨越宽度为L的河流,河中有n个石头。题目要求找到青蛙至少需要具备多大的跳跃能力。博客提供了问题的解析、思路以及代码实现,通过二分搜索方法确定青蛙的最小跳跃距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

The Frog’s Games

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K
(Java/Others) Total Submission(s): 5157 Accepted Submission(s):
2513

Problem Description The annual Games in frogs’ kingdom started again.
The most famous game is the Ironfrog Triathlon. One test in the
Ironfrog Triathlon is jumping. This project requires the frog athletes
to jump over the river. The width of the river is L (1<= L <=
1000000000). There are n (0<= n <= 500000) stones lined up in a
straight line from one side to the other side of the river. The frogs
can only jump through the river, but they can land on the stones. If
they fall into the river, they are out. The frogs was asked to jump
at most m (1<= m <= n+1) times. Now the frogs want to know if they
want to jump across the river, at least what ability should they have.
(That is the frog’s longest jump distance).

Input The input contains several cases. The first line of each case
contains three positive integer L, n, and m. Then n lines follow.
Each stands for the distance from the starting banks to the nth stone,
two stone appear in one place is impossible.

Output For each case, output a integer standing for the frog’s ability
at least they should have.

Sample Input
6 1 2
2
25 3 3
11
2
18

Sample Output

4
11

题目大意

在一条宽度为l的河上有n个石头, 要求用青蛙最多跳m次过河。 问青蛙最小的跳跃能力是多少。

思路

这个问题用二分查找可以非常容易的求得答。 然我们套用二分搜索的模型试着解答这个问题。

令:

条件C(x):= 可以经过m次长度最长为x的跳跃就可以到达河对岸

现在问题就转化为了求 x 的最小值。 在初始化区间的时候, 只需要将下界初始化为0, 上界初始化为河的宽度即可。

现在的问题是如何高效的判断c(x)是否可行。 由于跳跃长度为x的青蛙每次跳跃的距离等于不大于x的石头的最大的距离

C(x) = (距离当前位置不大于x的最远的石块 m次累加)

代码

#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<cmath>

using namespace std;

int l, n, m;
int sum[500010];

bool fun(int k)
{
    int last = 0, front = 1, step = 0;//mark 用front前驱搜索
    if (k * m < l)
        return false;
    while (front <= n + 1)
    {
        step++;
        if (sum[front] - sum[last] > k)
            return false;
        while (sum[front] - sum[last] <= k && front <= n + 1)
        {
            front++;//mark
        }
        last = front - 1;//mark
    }
    if (step > m)//mark step大于m说明现在的跳跃能力太小 需要增大
        return false;
    return true;//在step == m 的时候继续缩小 因为我们需要的是符合条件的最小值
}

int main(void)
{
    while (scanf_s("%d %d %d", &l, &n, &m) != EOF)
    {
        memset(sum, 0, sizeof(sum));
        for (int i = 1; i <= n; i++)
        {
            scanf_s("%d", &sum[i]);
        }
        sum[n + 1] = l;

        sort(sum, sum + n + 2);

        int i = 0, u = l;
        while (i <= u)
        {
            int mid = (i + u) / 2;
            if (fun(mid))
                u = mid - 1;
            else
                i = mid + 1;
        }
        printf("%d\n", i);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值