Add More Zero

本文探讨了一道数学计算题目,目标是在特定超算环境下找到10的最高次幂k,使得10^k不超过2^m-1。文章提供了实现这一目标的算法思路与C++代码示例。
There is a youngster known for amateur propositions concerning several mathematical hard problems. 

Nowadays, he is preparing a thought-provoking problem on a specific type of supercomputer which has ability to support calculations of integers between 00 and (2m1)(2m−1) (inclusive). 

As a young man born with ten fingers, he loves the powers of 1010 so much, which results in his eccentricity that he always ranges integers he would like to use from 11 to 10k10k (inclusive). 

For the sake of processing, all integers he would use possibly in this interesting problem ought to be as computable as this supercomputer could. 

Given the positive integer mm, your task is to determine maximum possible integer kkthat is suitable for the specific supercomputer.
Input
The input contains multiple test cases. Each test case in one line contains only one positive integer mm, satisfying 1m1051≤m≤105.
Output
For each test case, output " Case #xxyy" in one line (without quotes), where xxindicates the case number starting from 11 and yy denotes the answer of corresponding case.
Sample Input
1
64
Sample Output
Case #1: 0

Case #2: 19

题意:输入一个数m,求0到2^m-1范围内,使得10^k最大,求k

思路:10^k<=2^m-1 10^k<2^m 取对数 log10^k<log2^m k<m*log2/log10 k<m*log10(2)

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const double IP=0.30102999566398;
int main()
{
    int n,m,cas=1;
    while(~scanf("%d",&n))
    {
        int m=(int)(n*IP);
        printf("Case #%d: %d\n",cas++,m);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值