7、临床数据聚类分析方法解析

临床数据聚类分析方法解析

1. 引言

在临床研究中,具有单一诊断的患者群体往往存在显著的异质性,这种异质性会对预后和药物疗效产生影响。例如,抑郁症患者可能有反应性抑郁、失眠性抑郁或真性抑郁等亚型;胃癌患者的基因表达水平不同,其预后也有所差异;HIV 患者的不同特征会影响疫苗疗效等。在没有可用结果变量的数据样本中,聚类分析是识别亚组的合适替代方法。它基于患者特征相近则在预后和药物疗效等方面也可能相关的概念,且不需要因变量,是探索性数据挖掘和机器学习的重要方法。

2. 二维聚类分析方法
2.1 K - 均值聚类分析

K - 均值聚类分析与层次聚类的方向相反。它不是从每个患者自成一个聚类开始,而是随机选择聚类中心,然后通过迭代找到最适合数据的中心。该方法的一个重要假设是聚类大小相等,而层次聚类没有这个假设。

使用 SPSS 进行分析的操作步骤如下:
1. 选择“Analyze” -> “Classify” -> “K - means Cluster Analysis”。
2. 在“Variables”中输入“Age”和“Depression score”。
3. 在“Label Cases by”中输入作为字符串变量的患者编号。
4. 设置“Number of clusters”为 3(用于与上述方法进行比较)。
5. 点击“Method”,勾选“Iterate”。
6. 点击“Iterate”,设置“Maximal Iterations”为 10,“Convergence criterion”为 0。
7. 点击“Continue”。
8. 点击

内容概要:本文介绍了一种基于蒙特卡洛模拟和拉格朗日优化方法的电动汽车充电站有序充电调度策略,重点针对分时电价机制下的分散式优化问题。通过Matlab代码实现,构建了考虑用户充电需求、电网负荷平衡及电价波动的数学模【电动汽车充电站有序充电调度的分散式优化】基于蒙特卡诺和拉格朗日的电动汽车优化调度(分时电价调度)(Matlab代码实现)型,采用拉格朗日乘子法处理约束条件,结合蒙特卡洛方法模拟大量电动汽车的随机充电行为,实现对充电功率和时间的优化分配,旨在降低用户充电成本、平抑电网峰谷差并提升充电站运营效率。该方法体现了智能优化算法在电力系统调度中的实际应用价值。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事新能源汽车、智能电网相关领域的工程技术人员。; 使用场景及目标:①研究电动汽车有序充电调度策略的设计与仿真;②学习蒙特卡洛模拟与拉格朗日优化在能源系统中的联合应用;③掌握基于分时电价的需求响应优化建模方法;④为微电网、充电站运营管理提供技术支持和决策参考。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注目标函数构建、约束条件处理及优化求解过程,可尝试调整参数设置以观察不同场景下的调度效果,进一步拓展至多目标优化或多类型负荷协调调度的研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值