2017.05.11回顾

本篇记录了一天的工作流程,包括修复bug、数据监控、制定策略等,并详细描述了使用透视表进行数据分析的过程,以解决合作方产品通过率低的问题。

1、上午写完小结,开始思考重跑流程的问题,最后下午向同事沟通了解,制定了自己的策略

2、上午还修复了一个de_p2的问题

3、上午对常规数据进行了监控

4、下午主要就是和henry沟通,关于某合作方产品通过率偏低的问题,首先抓取仅一天拒绝原因,透视表可视化,针对拒绝原因,分析在网时长和grade的组合,这里找在网时长浪费了一些时间,然后将结果发给henry,做一些调整,又继续聊了下其他关于客群和建模的问题,要说新东西只有透视表中列的调整,基本是向下箭头选中,然后十字图表拖拉

5、晚上回家正常活动,睡觉还可以果断点儿,不管我堂客如何,要去主导他,而不是受他影响,早睡是为了明天更好的冒险!

胚胎实例分割数据集 一、基础信息 • 数据集名称:胚胎实例分割数据集 • 图片数量: 训练集:219张图片 验证集:49张图片 测试集:58张图片 总计:326张图片 • 训练集:219张图片 • 验证集:49张图片 • 测试集:58张图片 • 总计:326张图片 • 分类类别: 胚胎(embryo):表示生物胚胎结构,适用于发育生物学研究。 • 胚胎(embryo):表示生物胚胎结构,适用于发育生物学研究。 • 标注格式:YOLO格式,包含实例分割的多边形标注,适用于实例分割任务。 • 数据格式:图片来源于相关研究领域,格式为常见图像格式,细节清晰。 二、适用场景 • 胚胎发育AI分析系统:构建能够自动分割胚胎实例的AI模型,用于生物学研究中的形态变化追踪和量化分析。 • 医学与生物研究:在生殖医学、遗传学等领域,辅助研究人员进行胚胎结构识别、分割和发育阶段评估。 • 学术与创新研究:支持计算机视觉与生物医学的交叉学科研究,推动AI在胚胎学中的应用,助力高水平论文发表。 • 教育与实践培训:用于高校或研究机构的实验教学,帮助学生和从业者掌握实例分割技术及胚胎学知识。 三、数据集优势 • 精准与专业性:实例分割标注由领域专家完成,确保胚胎轮廓的精确性,提升模型训练的可靠性。 • 任务专用性:专注于胚胎实例分割,填补相关领域数据空白,适用于细粒度视觉分析。 • 格式兼容性:采用YOLO标注格式,易于集成到主流深度学习框架中,简化模型开发与部署流程。 • 科学价值突出:为胚胎发育研究、生命科学创新提供关键数据资源,促进AI在生物学中的实际应用。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值