RTS/CTS协议 (Both wlan and com are using it)

本文深入探讨了RTS/CTS协议如何解决隐藏终端问题,通过握手机制确保数据传输的准确性,避免信号冲突。

  RTS/CTS协议(Request To Send/Clear To Send)即请求发送/允许发送 协议,相当于一种握手协议,主要用来解决"隐藏终端"问题。"隐藏终端"(Hidden Stations)是指,基站A向基站B发送信息,基站C未侦测到A也向B发送,故A和C同时将信号发送至B,引起信号冲突,最终导致发送至B的信号都丢失了。"隐藏终端"多发生在大型单元中(一般在室外环境),这将带来效率损失,并且需要错误恢复机制。当需要传送大容量文件时,尤其需要杜绝"隐藏终端"现象的发生。IEEE802.11提供了如下解决方案。在参数配置中,若使用RTS/CTS协议,同时设置传送上限字节数----一旦待传送的数据大于此上限值时,即启动RTS/CTS握手协议:首先,A向B发送RTS信号,表明A要向B发送若干数据,B收到RTS后,向所有基站发出CTS信号,表明已准备就绪,A可以发送,而其余欲向B发送数据的基站则暂停发送;双方在成功交换RTS/CTS信号(即完成握手)后才开始真正的数据传递,保证了多个互不可见的发送站点同时向同一接收站点发送信号时,实际只能是收到接收站点回应CTS的那个站点能够进行发送,避免了冲突发生。即使有冲突发生,也只是在发送RTS时,这种情况下,由于收不到接收站点的CTS消息,大家再回头用DCF提供的竞争机制,分配一个随机退守定时值,等待下一次介质空闲DIFS后竞争发送RTS,直到成功为止。

 

详细总结、解析、举例分析下面的英文材料: Hidden node problem The distributed nature of channel access in 802.11 WLANs makes the carrier sense mechanism critical for collision free operation. The physical carrier sense, which logi cally resides in the PHY, is responsible for detecting the transmissions of other stations. However, in some situations it may not be possible for the physical carrier sense to detect the transmissions of all stations. Consider the situation in Figure 8.10 where there is data transfer between STA 1 and the AP. Transmissions from STA 1 can be detected by the APandSTA2.Adistantnode,STA3,candetecttransmissions from the AP but not from STA 1. STA 3 is a hidden node with respect to communication between STA 1 and the AP. When STA 1 transmits a frame to the AP there is a chance that STA 3 would still see the medium as idle and also begin a frame transmission. Network allocation vector (NAV) One mechanism defined to overcome the hidden node problem is the network allocation vector (NAV). The NAV is a function that logically resides in the MAC and provides a virtual carrier sense to augment the physical carrier sense. Each MAC frame carries a Duration field that is used to update the NAV in any station other than the addressed station that successfully demodulates the frame. The Duration field holds a time value that indicates the duration for which the sending station expects the medium to be busy referenced from the end of the last symbol of the PPDU carrying the MAC frame. All frames2 include the Duration field and may set the NAV in neighboring stations. However, to do so the frame must be successfully demodulated by the neighboring stations. The NAV is most effectively set in neighboring stations using robustly modu lated control frames, such as the RTS/CTS exchange, rather than data frames. RTS/CTS frame exchange To protect a station’s transmissions from hidden nodes, a station may begin a sequence with an RTS/CTS exchange as illustrated in Figure 8.11. The RTS (request to send) is sent by the initiator (STA 1) and the station addressed by the RTS (STA 2) responds with a CTS (clear to send). The RTS frame occupies less air time than the data frame and is thus less susceptible to collision than the longer data frame transmitted alone. Also, loss of the RTS to collision would be quickly detected. The RTS and CTS are robustly modulating so that they are broadly received. The Duration field of the RTS frame carries a NAV setting to cover the CTS response plus the time needed for the subsequent frame exchange. The CTS response has its Duration field set to the Duration field value seen in the RTS less SIFS andthe duration of the CTS response itself. In the diagram, the hidden node (STA 3) would receive the CTS frame and set its NAV to defer for the subsequent frame exchange. STA 2 sees both the RTS and CTS. The RTS/CTS exchange is required when the length of a data or management frame exceeds the threshold set by the dot11RTSThreshold attribute. The dot11RTSThreshold is a local management attribute and may be set to 0 so that all MPDUs are delivered with an RTS/CTS exchange, to the maximum allowed MPDU length so that the RTS/CTS need not be used at all, or any value in between. EIFS Another mechanism used to protect against hidden nodes is the extended inter-frame space (EIFS). A station uses EIFS instead of DIFS to defer if a frame is detected but not correctly received, i.e. the MAC determines that the frame check sequence (FCS) is invalid. EIFS is defined as: EIFS ¼ aSIFSTimeþACKTxTimeþDIFS ð8:3Þ where ACKTxTime is the time required to transmit an ACK frame at the lowest mandatory PHY data rate. EIFS is intended to prevent a station from transmitting over the ACKofahiddennodewhenastationisunable todemodulate the data frameand thus correctly set its NAV. If during the EIFS defer a valid frame is received (for example, the ACK) then a DIFS defer is used following the actual frame instead of continuing with EIFS. EIFS usage is illustrated in Figure 8.12
最新发布
08-21
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值