Problem Description
Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1] = b[M]. If there are more than one K exist, output the smallest one.
Input
The first line of input is a number T which indicate the number of cases. Each case contains three lines. The first line is two numbers N and M (1 <= M <= 10000, 1 <= N <= 1000000). The second line contains N integers which indicate a[1], a[2], ...... , a[N]. The third line contains M integers which indicate b[1], b[2], ...... , b[M]. All integers are in the range of [-1000000, 1000000].
Output
For each test case, you should output one line which only contain K described above. If no such K exists, output -1 instead.
Sample Input
2 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 1 3 13 5 1 2 1 2 3 1 2 3 1 3 2 1 2 1 2 3 2 1
Sample Output
6 -1
没什么好解释的,直接模板
代码:#include<stdio.h> #define M 10001 #define N 1000001 __int64 a[N],b[M]; int next[M]; int t,n,m; void get_next() { int i=-1,j=0; next[0] = -1; while(j<m-1) { if(i==-1 || b[i]==b[j]) { i++; j++; next[j] = i; } else i=next[i]; } } int kmp() { int i=0,j=0; while(i<n && j<m) { if(a[i] == b[j] || j==-1) { i++; j++; } else j=next[j]; } if(j>=m) return i-m+1; else return -1; } int main() { int i,j; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&m); for(i=0;i<n;i++) scanf("%d",&a[i]); for(i=0;i<m;i++) scanf("%d",&b[i]); get_next(); printf("%d\n",kmp()); } return 0; }