return a tuple

【SCI复现】基于纳什博弈的多微网主体电热双层共享策略研究(Matlab代码实现)内容概要:本文围绕“基于纳什博弈的多微网主体电热双层共享策略研究”展开,结合Matlab代码实现,复现了SCI级别的科研成果。研究聚焦于多个微网主体之间的能源共享问题,引入纳什博弈理论构建双层优化模型,上层为各微网间的非合作博弈策略,下层为各微网内部电热联合优化调度,实现能源高效利用与经济性目标的平衡。文中详细阐述了模型构建、博弈均衡求解、约束处理及算法实现过程,并通过Matlab编程进行仿真验证,展示了多微网在电热耦合条件下的运行特性和共享效益。; 适合人群:具备一定电力系统、优化理论和博弈论基础知识的研究生、科研人员及从事能源互联网、微电网优化等相关领域的工程师。; 使用场景及目标:① 学习如何将纳什博弈应用于多主体能源系统优化;② 掌握双层优化模型的建模与求解方法;③ 复现SCI论文中的仿真案例,提升科研实践能力;④ 为微电网集群协同调度、能源共享机制设计提供技术参考。; 阅读建议:建议读者结合Matlab代码逐行理解模型实现细节,重点关注博弈均衡的求解过程与双层结构的迭代逻辑,同时可尝试修改参数或扩展模型以适应不同应用场景,深化对多主体协同优化机制的理解。
To compute the loss and gradients for a two layer fully connected neural network, we need to perform forward and backward propagation. Forward propagation: 1. Compute the scores for each class by multiplying the input data X with the weight matrix W1 and adding the bias term b1. Then apply ReLU activation function to the result. 2. Compute the scores for each class by multiplying the output of the first layer with the weight matrix W2 and adding the bias term b2. The loss function for a multi-class classification problem is usually the cross-entropy loss. Backward propagation: 1. Compute the gradient of the loss with respect to the scores of the second layer. 2. Compute the gradient of the loss with respect to the parameters of the second layer (W2 and b2). 3. Compute the gradient of the loss with respect to the output of the first layer. 4. Compute the gradient of the loss with respect to the scores of the first layer (taking into account the ReLU activation function). 5. Compute the gradient of the loss with respect to the parameters of the first layer (W1 and b1). Finally, we add the regularization term to the loss and compute the gradients with respect to the regularization term as well. Here's the code: ```python def two_layer_fc(X, params, reg=0.0): W1, b1, W2, b2 = params['W1'], params['b1'], params['W2'], params['b2'] N, D = X.shape scores = None # Forward pass hidden_layer = np.maximum(0, np.dot(X, W1) + b1) # ReLU activation scores = np.dot(hidden_layer, W2) + b2 # If y is not given, return scores if y is None: return scores # Compute the loss and gradients loss = None grads = {} # Compute the loss (data loss and regularization loss) num_classes = W2.shape[1] exp_scores = np.exp(scores) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) correct_logprobs = -np.log(probs[range(N),y]) data_loss = np.sum(correct_logprobs) / N reg_loss = 0.5 * reg * (np.sum(W1*W1) + np.sum(W2*W2)) loss = data_loss + reg_loss # Compute the gradients dscores = probs dscores[range(N),y] -= 1 dscores /= N dW2 = np.dot(hidden_layer.T, dscores) db2 = np.sum(dscores, axis=0, keepdims=True) dhidden = np.dot(dscores, W2.T) dhidden[hidden_layer <= 0] = 0 dW1 = np.dot(X.T, dhidden) db1 = np.sum(dhidden, axis=0, keepdims=True) # Add regularization gradient contribution dW2 += reg * W2 dW1 += reg * W1 # Store gradients in dictionary grads['W1'] = dW1 grads['b1'] = db1 grads['W2'] = dW2 grads['b2'] = db2 return loss, grads ```
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值