Gleaming the Cubes (思维题)

博客围绕计算多个长方体相交体积展开。输入包含多组长方体数据,每组先给出长方体数量,再描述每个长方体。程序需持续处理,直到输入的长方体数量为零。通过求出长宽高公共长度相乘得体积,还给出了相应的代码实现。

As chief engineer of the Starship Interprize, the task of repairing the hyperstellar, cubic, transwarped-out software has fallen on your shoulders. Simply put, you must compute the volume of the intersection of anywhere from 2 to 1000 cubes. 

Input

The input data file consists of several sets of cubes for which the volume of their intersections must be computed. The first line of the data file contains a number (from 2 to 1000) which indicates the number of cubes which follow, one cube per line. Each line which describes a cube contains four integers. The first three integers are the x, y, and z coordinates of the corner of a cube, and the fourth integer is the positive distance which the cube extends in each of the three directions (parallel to the x, y, and z axes) from that corner. 

Output

Following the data for the first set of cubes will be a number which indicates how many cubes are in a second set, followed by the cube descriptions for the second set, again one per line. Following this will be a third set, and so on. Your program should continue to process sets of cubes, outputting the volume of their intersections to the output file, one set per line, until a zero is read for the number of cubes. 

Note that the data file will always contain at least one set of cubes, and every set will contain at least 2 and at most 1000 cubes. For any given set of cubes, the volume of their intersections will not exceed 1,000,000 units. 
 

Sample Input

2
0 0 0 10
9 1 1 5
3
0 0 0 10
9 1 1 5
8 2 2 3
0

Sample Output

25
9

题意:给出三维空间的一个点以及从这个点开始延长成的长方体的相交体积

分析:通过对样例的分析不难得出,只需求出长宽高的公共长度,相乘即可;注意没有交点或只有一个交点的情况

代码:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<string.h>
using namespace std;
const int inf=999999999;
int mapp[1000+10][5];
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        if(n==0)
            break;
        for(int i=1;i<=n;i++)
            cin>>mapp[i][1]>>mapp[i][2]>>mapp[i][3]>>mapp[i][4];
        //for(int i=1;i<=n;i++)
        //    cout<<mapp[i][1]<<" "<<mapp[i][2]<<" "<<mapp[i][3]<<" "<<mapp[i][4];
        int a1=0,a2=0,a3=0;
        int b1=inf,b2=inf,b3=inf;
        for(int i=1;i<=n;i++)
        {
            a1=max(a1,mapp[i][1]);
            a2=max(a2,mapp[i][2]);
            a3=max(a3,mapp[i][3]);

            b1=min(b1,mapp[i][1]+mapp[i][4]);
            b2=min(b2,mapp[i][2]+mapp[i][4]);
            b3=min(b3,mapp[i][3]+mapp[i][4]);
        }
 
        if(b1<a1||b2<a2||b3<a3)
            cout<<"0"<<endl;
        else
            cout<<(b1-a1)*(b2-a2)*(b3-a3)<<endl;
    }
    return 0;
}

内容概要:本文系统介绍了算术优化算法(AOA)的基本原理、核心思想及Python实现方法,并通过图像分割的实际案例展示了其应用价值。AOA是一种基于种群的元启发式算法,其核心思想来源于四则运算,利用乘除运算进行全局勘探,加减运算进行局部开发,通过数学优化器加速函数(MOA)和数学优化概率(MOP)动态控制搜索过程,在全局探索与局部开发之间实现平衡。文章详细解析了算法的初始化、勘探与开发阶段的更新策略,并提供了完整的Python代码实现,结合Rastrigin函数进行测试验证。进一步地,以Flask框架搭建前后端分离系统,将AOA应用于图像分割任务,展示了其在实际工程中的可行性与高效性。最后,通过收敛速度、寻优精度等指标评估算法性能,并提出自适应参数调整、模型优化和并行计算等改进策略。; 适合人群:具备一定Python编程基础和优化算法基础知识的高校学生、科研人员及工程技术人员,尤其适合从事人工智能、图像处理、智能优化等领域的从业者;; 使用场景及目标:①理解元启发式算法的设计思想与实现机制;②掌握AOA在函数优化、图像分割等实际问中的建模与求解方法;③学习如何将优化算法集成到Web系统中实现工程化应用;④为算法性能评估与改进提供实践参考; 阅读建议:建议读者结合代码逐行调试,深入理解算法流程中MOA与MOP的作用机制,尝试在不同测试函数上运行算法以观察性能差异,并可进一步扩展图像分割模块,引入更复杂的预处理或后处理技术以提升分割效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值