D - Ignatius and the Princess III (母函数)

博客围绕整数分解问题展开,给定正整数N,求其不同分解方程的数量。如N为4时有5种分解方式。输入为正整数N,输出为分解方程数量。还给出了用C语言实现的代码,通过多层循环计算结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says. 

"The second problem is, given an positive integer N, we define an equation like this: 
  N=a[1]+a[2]+a[3]+...+a[m]; 
  a[i]>0,1<=m<=N; 
My question is how many different equations you can find for a given N. 
For example, assume N is 4, we can find: 
  4 = 4; 
  4 = 3 + 1; 
  4 = 2 + 2; 
  4 = 2 + 1 + 1; 
  4 = 1 + 1 + 1 + 1; 
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!" 

Input

The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file. 

Output

For each test case, you have to output a line contains an integer P which indicate the different equations you have found. 

Sample Input

4
10
20

Sample Output

5
42
627

题意:整数分解,问有多少种分解方法

分析;只用把硬币的面值写成从1-n的即可;

代码:

#include<stdio.h>
#include<string.h>
using namespace std;
int num1[130],num2[130];
int n;
int main()
{
    while(scanf("%d",&n)!=EOF)
    {

        memset(num1,0,sizeof(num1));
          num1[0]=1;
        for(int i=1;i<=n;i++)
        {
            for(int j=0;j<=n;j++)
            {
                for(int k=0;k<=n-j;k+=i)
                {
                    num2[k+j]+=num1[j];
                }
            }
            for(int j=0;j<=n;j++)
            {
                num1[j]=num2[j];
                num2[j]=0;
            }
        }
        int ans=0;
        printf("%d\n",num1[n]);
    }
    return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值