二项分布
二项分布是由伯努利提出的概念,指的是重复n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布服从 0−1 分布。
考虑只有两种可能结果的随机试验,当成功的概率(π)是恒定的,且各次试验相互独立,这种试验在统计学上称为伯努利试验(Bernoulli trial)。如果进行n次伯努利试验,取得成功次数为X(X=0,1,2…,n)的概率可用下面的二项分布概率公式来描述:
其中,式中n为独立的伯努利试验次数,π为成功的概率,(1−π)为失败的概率。C(X,n)表示在n次试验中出现X的各种组合情况,在此称为二项系数。
二项分布的示例
抛硬币试验就是伯努利试验。在一次试验中硬币要么正面朝上,要么反面朝上,每次正面朝上的概率都一样p=0.5。且每次抛硬币的事件相互独立,即每次正面朝上的概率不受其他试验的影响。如果独立重复抛n=10次硬币,正面朝上的次数k可能为0,1,2,3,4,5,6,7,8,9,10中的任何一个,那么k显然是一个随机变量,这里就称随机变量k服从二项分布。
基于 scipy 的二分布计算
在 Python 中, scipy 包提供了丰富的可用函数。其中,计算每次观测的二项分布概率密度函数为: stats.binom.pmf(k,n,p)
其中n 表示测量次数, k 是目标结果的次数, p 为抽样概率。输出为k个元素的数组,数组的每个元素表示出现k次目标结果的概率。
下面我们通过一个具体例子来说明一下该函数的用法。 有一个质地均匀的骰子,投