代码地址
CIFAR-10数据集
环境准备
python3.6
tensorflow1.14
keras2.2.5
其他的不用指定版本
数据集改为本地文件
环境准备好了以后,可以直接运行good-llp-gan.py,这里代码会去下载CIFAR-10数据集,会很慢,我们可以先下来来,然后本地直接加载。
下载好cifar-10-python.tar.gz,解压,放在dataset文件夹下。
load_local_cifar10.py
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.keras import backend as K
import numpy as np
import os
import sys
from six.moves import cPickle
def load_batch(fpath, label_key='labels'):
"""Internal utility for parsing CIFAR data.
# Arguments
fpath: path the file to parse.
label_key: key for label data in the retrieve
dictionary.
# Returns
A tuple `(data, labels)`.
"""
with open(fpath, 'rb') as f:
if sys.version_info < (3,):
d = cPickle.load(f)
else:
d = cPickle.load(f, encoding='bytes')
# decode utf8
d_decoded = {
}
for k, v in d.items():
d_decoded[k.decode('utf8')] = v
d = d_decoded
data = d['data']
labels = d[label_key]
data = data.reshape(data.shape[0], 3, 32, 32)
return data, labels
def load_data(ROOT):
"""Loads CIFAR10 dataset.
# Returns
Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`.
"""
# dirname = 'cifar-10-batches-py'
# o

本文介绍如何将CIFAR-10数据集从本地文件加载到Python环境中,适用于使用LLP-GAN项目的场景。文章详细说明了环境配置的要求,包括Python、TensorFlow和Keras等版本,并提供了具体的代码实现。
最低0.47元/天 解锁文章
648

被折叠的 条评论
为什么被折叠?



