1136 A Delayed Palindrome

回文数与延迟回文数

1136 A Delayed Palindrome
题目链接
Consider a positive integer N written in standard notation with k+1 digits a
​i
​​ as a
​k
​​ ⋯a
​1
​​ a
​0
​​ with 0≤a
​i
​​ <10 for all i and a
​k
​​ >0. Then N is palindromic if and only if a
​i
​​ =a
​k−i
​​ for all i. Zero is written 0 and is also palindromic by definition.

Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. Such number is called a delayed palindrome. (Quoted from https://en.wikipedia.org/wiki/Palindromic_number )

Given any positive integer, you are supposed to find its paired palindromic number.

Input Specification:
Each input file contains one test case which gives a positive integer no more than 1000 digits.

Output Specification:
For each test case, print line by line the process of finding the palindromic number. The format of each line is the following:

A + B = C
where A is the original number, B is the reversed A, and C is their sum. A starts being the input number, and this process ends until C becomes a palindromic number – in this case we print in the last line C is a palindromic number.; or if a palindromic number cannot be found in 10 iterations, print Not found in 10 iterations. instead.

Sample Input 1:
97152
Sample Output 1:
97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.
Sample Input 2:
196
Sample Output 2:
196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.
回文数字的判定与变换。
参考代码:

#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
bool is_palin(string s) {
	int k = s.size() - 1, i, n;
	n = k / 2;
	for (i = 0; i <= n; i++) {
		if (s[i] != s[k - i])break;
	}
	if (i == n+1)return true;
    return false;
}
string sum(string s, string s1) {
	int n = s.size() - 1, jinwei = 0, m, p;
	string res;
	for (int i = n; i >= 0; i--) {
		p = s[i] - '0' + s1[i] - '0' + jinwei;
		m = p % 10;
		jinwei = p / 10;
		res = to_string(m) + res;
	}
	if (jinwei != 0)res = to_string(jinwei) + res;
	return res;
}
int main() {
	string s, s1, res;
	int cnt = 0;
	cin >> s;
	while (!is_palin(s)){
		cnt++;
		if (cnt > 10) { cout << "Not found in 10 iterations.";return 0; }
		s1 = s;
		reverse(s1.begin(), s1.end());
		res = sum(s, s1);
		cout << s << " + " << s1 << " = " << res << endl;
		s = res;
	}
	cout << s << " is a palindromic number.";

	return 0;
}
Dask Delayed 是 Dask 库中的一个重要特性,它允许用户以延迟执行的方式构建计算图,从而实现并行计算。 ### 原理 Dask Delayed 的核心原理是将函数和其输入参数封装成一个延迟对象,而不是立即执行函数。这些延迟对象可以组合成一个有向无环图(DAG),表示整个计算流程。Dask 会根据这个图来分析计算的依赖关系,然后在合适的时候并行地执行这些任务。 ### 使用指南 #### 基本使用 以下是一个简单的示例,展示了如何使用 Dask Delayed 来并行计算两个数的和: ```python import dask @dask.delayed def add(x, y): return x + y a = 1 b = 2 c = 3 # 创建延迟对象 delayed_result = add(add(a, b), c) # 执行计算 result = delayed_result.compute() print(result) ``` 在这个例子中,`@dask.delayed` 装饰器将 `add` 函数变成了一个延迟函数。当调用 `add` 函数时,实际上并没有立即执行计算,而是创建了一个延迟对象。最后,调用 `compute()` 方法时,Dask 会根据图的依赖关系并行地执行这些任务。 #### 组合多个延迟任务 可以将多个延迟任务组合起来,构建更复杂的计算图: ```python import dask @dask.delayed def square(x): return x ** 2 @dask.delayed def add(x, y): return x + y a = 1 b = 2 c = 3 # 创建延迟对象 squared_a = square(a) squared_b = square(b) sum_of_squares = add(squared_a, squared_b) final_result = add(sum_of_squares, c) # 执行计算 result = final_result.compute() print(result) ``` ### 最佳实践 - **避免过早计算**:尽量在最后一步调用 `compute()` 方法,让 Dask 有足够的信息来优化计算图。 - **批量处理**:如果有多个独立的任务,可以将它们批量处理,以提高并行效率。 - **可视化计算图**:使用 `delayed_object.visualize()` 方法可以可视化计算图,帮助理解计算流程和依赖关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值