1081 Rational Sum
Given N rational numbers in the form numerator/denominator, you are supposed to calculate their sum.
Input Specification:
Each input file contains one test case. Each case starts with a positive integer N (≤100), followed in the next line N rational numbers a1/b1 a2/b2 … where all the numerators and denominators are in the range of long int. If there is a negative number, then the sign must appear in front of the numerator.
Output Specification:
For each test case, output the sum in the simplest form integer numerator/denominator where integer is the integer part of the sum, numerator < denominator, and the numerator and the denominator have no common factor. You must output only the fractional part if the integer part is 0.
Sample Input 1:
5
2/5 4/15 1/30 -2/60 8/3
Sample Output 1:
3 1/3
Sample Input 2:
2
4/3 2/3
Sample Output 2:
2
Sample Input 3:
3
1/3 -1/6 1/8
Sample Output 3:
7/24
回头再补充详细解析。
参考代码:
#include<iostream>
#include<vector>
using namespace std;
int gcd(int c1, int c2) { //最大公因数
if (c1 < 0)c1 = c1 * (-1);
if (c2 < 0)c2 = c2 * (-1);
int a ,b, r;
a = c1 >= c2 ? c1 : c2;
b = c1 < c2 ? c1 : c2;
r = a % b;
while (r!=0){
a = b;
b = r;
r = a % b;
}
return b;
}
int lcm(int a, int b){ //最小公倍数
int factor = gcd(a, b);
long long int sum = a * b;
int temp_lcm = sum / factor;
return temp_lcm;
}
int main(){
int n, a, b, temp_gcd, c, d, fenzhi, fenmu;
cin >> n;
scanf_s("%d/%d", &a, &b);
if (a != 0) {
temp_gcd = gcd(a, b);
a = a / temp_gcd;
b = b / temp_gcd;
}
for (int i = 1; i < n; i++) {
scanf_s("%d/%d", &c, &d);
if (c != 0 && d != 0) {
temp_gcd = gcd(c, d);
c = c / temp_gcd;
d = d / temp_gcd;
}
int temp_lcm = lcm(b, d);
a=fenzhi = temp_lcm / b * a + temp_lcm / d * c;
b=fenmu = temp_lcm;
if (fenzhi != 0 && fenmu != 0) {
temp_gcd = gcd(fenzhi, fenmu);
a = fenzhi / temp_gcd;
b = fenmu / temp_gcd;
}
}
int xishu = a / b, flag = 0;
fenzhi = a % b;
if (xishu != 0)
{
cout << xishu;
flag = 1;
}
if (fenzhi != 0) {
if (flag)cout << " ";
cout << fenzhi << "/" << b;
}
if (xishu == 0 && fenzhi == 0)
cout << "0";
return 0;
}
欢迎评论!!!