209. Minimum Size Subarray Sum 【M】【35】

寻找最小子数组和问题的双指针解决方案
本文详细介绍了如何使用双指针技术解决给定数组中找到和大于等于特定值的最小子数组长度的问题。通过遍历并调整两个指针的位置,实现了O(n)的时间复杂度。此外,文章还提供了进一步优化为O(n log n)解决方案的思考过程。该技术适用于数组操作和算法优化领域。

Given an array of n positive integers and a positive integer s, find the minimal length of a subarray of which the sum ≥ s. If there isn't one, return 0 instead.

For example, given the array [2,3,1,2,4,3] and s = 7,
the subarray [4,3] has the minimal length under the problem constraint.

click to show more practice.

More practice:

If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).

Credits:
Special thanks to @Freezen for adding this problem and creating all test cases.

Subscribe to see which companies asked this question


一个很有趣的双指针

从头到尾遍历,b每次增大一,然后观察a可以减少几个


class Solution(object):
    def minSubArrayLen(self, s, nums):
        if sum(nums) < s:
            return 0

        minn = 2 << 30   
        a,b = 0,0
        total = nums[0]
        res = 0

        while total + nums[b] < s:
            b += 1
            total += nums[b]

        res = b + 1

        while b < len(nums):
            while total - nums[a] >= s:
                total -= nums[a]
                a += 1
            res = b - a + 1
            minn = min(minn,res)
            b += 1
            try:
                total += nums[b]
            except:
                break
        return minn



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值