Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should:
Return true if there exists i, j, k
such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.
Your algorithm should run in O(n) time complexity and O(1) space complexity.
Examples:
Given [1, 2, 3, 4, 5],
return true.
Given [5, 4, 3, 2, 1],
return false.
Credits:
Special thanks to @DjangoUnchained for adding this problem and creating all test cases.
Subscribe to see which companies asked this question
就是维护一个大小为3的窗口
low代表最小的,mid代表中间大小的
如果当前数,大于mid,那肯定满足条件
这里面有个trick,就是low的位置不一定在mid前面,它可以代表有可能成为最小的的候选。
class Solution(object):
def increasingTriplet(self, nums):
if len(nums)<3:
return False
mid=sys.maxint
low=nums[0]
for i in nums[1:]:
#print low,mid
if i > mid:
return True
if i > low:
mid = min(mid,i)
low = min(low,i)
return False

本文介绍了一种高效算法,用于判断一个未排序数组中是否存在长度为3的递增子序列。该算法的时间复杂度为O(n),空间复杂度为O(1)。
5万+

被折叠的 条评论
为什么被折叠?



