(八)Flink Join 连接

在分布式数据处理中,JOIN 是一个非常重要的操作。Flink 的 JOIN 是用于将两个数据流按照一定的条件进行连接,生成新的数据流。Flink 双流 JOIN 主要分为两大类:一类是基于窗口的 JOIN 操作,另一类是基于原生 State 的 Connect 算子操作。其中基于窗口的 JOIN 可细分为 Window Join、coGroup、Interval Join 三种。下面我们将对这三种 JOIN 做详细介绍。

目录

Window Join

coGroup

Interal Join


Window Join

Window Join 作用在两个流中有相同 key 且处于相同窗口的元素上。这些窗口可以通过 window assigner 定义,并且两个流中的元素都会被用于计算窗口的结果。 两个流中的元素在组合之后,会被传递给用户定义的 JoinFunction 或 FlatJoinFunction,用户可以用它们输出符合 Join 要求的结果。 底层原理:两条实时流数据缓存在 Window State 中,当窗口触发计算时,执行 Join 操作。

常见的用例可以总结为以下代码:

Stream1.join(Stream2)
    .where(<KeySelector>)
    .equalTo(<KeySelector>)
    .window(<WindowAssigner>)
    .apply(<JoinFunction>);

语义上有一些值得注意的地方:

两个流中创建成对的元素与 inner-join 类似,即一个流中的元素在与另一个流中对应的元素完成 join 之前不会被输出。

完成 join 的元素会将他们的 timestamp 设为对应窗口中允许的最大 timestamp。比如一个边界为 [5, 10) 窗口中的元素在 join 之后的 timestamp 为 9。

接下来我们会用例子说明各种 window join 如何运作。

<
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

springk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值