Fibonacci Check-up
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1356 Accepted Submission(s): 778
Problem Description
Every ALPC has his own alpc-number just like alpc12, alpc55, alpc62 etc.
As more and more fresh man join us. How to number them? And how to avoid their alpc-number conflicted?
Of course, we can number them one by one, but that’s too bored! So ALPCs use another method called Fibonacci Check-up in spite of collision.
First you should multiply all digit of your studying number to get a number n (maybe huge).
Then use Fibonacci Check-up!
Fibonacci sequence is well-known to everyone. People define Fibonacci sequence as follows: F(0) = 0, F(1) = 1. F(n) = F(n-1) + F(n-2), n>=2. It’s easy for us to calculate F(n) mod m.
But in this method we make the problem has more challenge. We calculate the formula
, is the combination number. The answer mod m (the total number of alpc team members) is just your alpc-number.
As more and more fresh man join us. How to number them? And how to avoid their alpc-number conflicted?
Of course, we can number them one by one, but that’s too bored! So ALPCs use another method called Fibonacci Check-up in spite of collision.
First you should multiply all digit of your studying number to get a number n (maybe huge).
Then use Fibonacci Check-up!
Fibonacci sequence is well-known to everyone. People define Fibonacci sequence as follows: F(0) = 0, F(1) = 1. F(n) = F(n-1) + F(n-2), n>=2. It’s easy for us to calculate F(n) mod m.
But in this method we make the problem has more challenge. We calculate the formula
, is the combination number. The answer mod m (the total number of alpc team members) is just your alpc-number.
Input
First line is the testcase T.
Following T lines, each line is two integers n, m ( 0<= n <= 10^9, 1 <= m <= 30000 )
Following T lines, each line is two integers n, m ( 0<= n <= 10^9, 1 <= m <= 30000 )
Output
Output the alpc-number.
Sample Input
2 1 30000 2 30000
Sample Output
1 3
分析:
先暴力打表找出规律,得出递推式为:F(n) = 3*F(n-1) - F(n-2)
由于N很大,线性时间会超时,要优化到 log(N),所以将递推公式变为矩阵,由矩阵快速幂求解即可。
形如: F(n) = a*F(n-1) + b*F(n-2)的式子,可以转化为:
a b
1 0
形式的矩阵。
代码:
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <cstring>
using namespace std;
typedef long long int ll;
/**暴力打表找规律
int arr[10];
int C(int n,int m){
int ans = 1;
for(int i=0; i<m; i++)
ans *= (n-i);
for(int i=1; i<=m; i++)
ans /= i;
return ans;
}
void make_list(){
int Fac[10];
Fac[0] = 0;
Fac[1] = Fac[2] = 1;
for(int i=3; i<10; i++)
Fac[i] = Fac[i-1]+Fac[i-2];
arr[0] = 0;
for(int i=1; i<10; i++){
for(int j=0; j<=i; j++)
arr[i] += C(i,j)*Fac[j];
}
for(int i=0; i<10; i++)
cout << arr[i] << endl;
} */
int N,M;
struct matrix{
int a[2][2];
matrix operator*(const matrix& tmp){
matrix ans;
memset(ans.a,0,sizeof(ans.a));
for(int i=0; i<2; i++)
for(int j=0; j<2; j++)
for(int k=0; k<2; k++)
ans.a[i][j] = (ans.a[i][j] + a[i][k]*tmp.a[k][j])%M;
return ans;
}
};
matrix quick_pow(matrix a,int n){
matrix ans;
ans.a[0][0] = ans.a[1][1] = 1;
ans.a[0][1] = ans.a[1][0] = 0;
while(n){
if(n%2)
ans = ans*a;
a = a*a;
n /= 2;
}
return ans;
}
int main(){
//make_list();
int T;
scanf("%d",&T);
matrix ans;
while(T--){
ans.a[0][0] = 3;
ans.a[0][1] = -1;
ans.a[1][0] = 1;
ans.a[1][1] = 0;
scanf("%d %d",&N,&M);
if(N==0){
printf("0\n");
continue;
}
ans = quick_pow(ans,N-1);
printf("%d\n",(ans.a[0][0]+M)%M);
}
return 0;
}

本文介绍了一种基于Fibonacci数列的检查算法——FibonacciCheck-up,该算法用于生成特定编号,并通过矩阵快速幂的方式进行优化计算。
644

被折叠的 条评论
为什么被折叠?



