HDU 2855(由递推式构造矩阵+矩阵快速幂)

本文介绍了一种基于Fibonacci数列的检查算法——FibonacciCheck-up,该算法用于生成特定编号,并通过矩阵快速幂的方式进行优化计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Fibonacci Check-up

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1356    Accepted Submission(s): 778


Problem Description
Every ALPC has his own alpc-number just like alpc12, alpc55, alpc62 etc.
As more and more fresh man join us. How to number them? And how to avoid their alpc-number conflicted? 
Of course, we can number them one by one, but that’s too bored! So ALPCs use another method called Fibonacci Check-up in spite of collision. 

First you should multiply all digit of your studying number to get a number n (maybe huge).
Then use Fibonacci Check-up!
Fibonacci sequence is well-known to everyone. People define Fibonacci sequence as follows: F(0) = 0, F(1) = 1. F(n) = F(n-1) + F(n-2), n>=2. It’s easy for us to calculate F(n) mod m. 
But in this method we make the problem has more challenge. We calculate the formula  , is the combination number. The answer mod m (the total number of alpc team members) is just your alpc-number.
 

Input
First line is the testcase T.
Following T lines, each line is two integers n, m ( 0<= n <= 10^9, 1 <= m <= 30000 )
 

Output
Output the alpc-number.
 

Sample Input
  
  
2 1 30000 2 30000
 

Sample Output
  
  
1 3

分析:
先暴力打表找出规律,得出递推式为:F(n) = 3*F(n-1) - F(n-2)
由于N很大,线性时间会超时,要优化到 log(N),所以将递推公式变为矩阵,由矩阵快速幂求解即可。
形如: F(n) = a*F(n-1) + b*F(n-2)的式子,可以转化为:
  a  b
  1  0
形式的矩阵。

代码:
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <cstring>

using namespace std;

typedef long long int ll;

/**暴力打表找规律 
int arr[10];
int C(int n,int m){
	int ans = 1;
	for(int i=0; i<m; i++)
		ans *= (n-i);
	for(int i=1; i<=m; i++)
		ans /= i;
	return ans;
}

void make_list(){
	int Fac[10];
	Fac[0] = 0;
	Fac[1] = Fac[2] = 1;
	for(int i=3; i<10; i++)
		Fac[i] = Fac[i-1]+Fac[i-2];
	arr[0] = 0;
	for(int i=1; i<10; i++){
		for(int j=0; j<=i; j++)
			arr[i] += C(i,j)*Fac[j]; 
	}
	for(int i=0; i<10; i++)
		cout << arr[i] << endl;
}  */

int N,M; 
struct matrix{
	int a[2][2];
	matrix operator*(const matrix& tmp){
		matrix ans;
		memset(ans.a,0,sizeof(ans.a));
		for(int i=0; i<2; i++)
			for(int j=0; j<2; j++)
				for(int k=0; k<2; k++)
					ans.a[i][j] = (ans.a[i][j] + a[i][k]*tmp.a[k][j])%M;
		return ans;
	}
};

matrix quick_pow(matrix a,int n){
	matrix ans;
	ans.a[0][0] = ans.a[1][1] = 1;
	ans.a[0][1] = ans.a[1][0] = 0;
	while(n){
		if(n%2)
			ans = ans*a;
		a = a*a;
		n /= 2; 
	}
	return ans;
}

int main(){
	
	//make_list();
	int T;
	scanf("%d",&T);
	matrix ans;
	while(T--){ 
		ans.a[0][0] = 3;
		ans.a[0][1] = -1;
		ans.a[1][0] = 1;
		ans.a[1][1] = 0;
		scanf("%d %d",&N,&M);
		if(N==0){
			printf("0\n");
			continue;
		}
		ans = quick_pow(ans,N-1);
		printf("%d\n",(ans.a[0][0]+M)%M);
	}
	return 0;
}








评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值