MKT3019 Data Driven Marketing Decisions Semester 2 2023-24R

Java Python Assessment Brief  MKT3019

Module Code:

MKT3019

Module Title:

Data Driven Marketing Decisions

Assessment Type:

Individual Report (Module weightage: 50%)

Semester:

Semester 2

Academic Year:

2023-24

Hand in Date:

Deadline: 4pm on Friday May 10th, 2024.

Module Learning Outcomes

Intended Knowledge Outcomes

1. Demonstrate knowledge and understanding of data types, data handling and analytics methods essential to data driven marketing decisions

2. Use and apply a range of analytics tools and techniques to develop useful strategic insights critical to marketing and business operations

3. Understand and apply digital analytics tools and techniques in marketing context

4. Critically evaluate and apply theoretical concepts related to marketing and business analytics

Intended Skill Outcomes

1. Understand and frame data driven marketing problems

2. Identify the nature of data essential to marketing analytics and decision making process

3. Develop conceptual and practical understanding of data modelling in marketing analytics

4. Analyse, resolve and communicate complex business and marketing problems using data analytics and visualisation tools

5. Apply digital analytics methods in resolving digital marketing problems

 Assessment Case Brief

The New-Ark Shoes Ltd. is an SME, based in Newcastle Upon Tyne, that operates online by selling, both, locally produced and imported branded shoes. The business has ambitious growth plans in rivalling some of the high street shoe stores and appointed you as a Business and Marketing Analytics Executive to develop an organisational data driven decision making culture.

The organisation has received your first descriptive analytics report and wants you to develop more predictive busines MKT3019 Data Driven Marketing Decisions Semester 2 2023-24R s-related insights into the future. Your next assignment is to produce a 2000 word (+/-10%) comprehensive analytics report addressing the following:

1. Predictive Business Intelligence: as part of this section, you are expected to develop TWO predictive analytics models (decision models) and generate key analytical insights using these models. Your designed predictive models must generate important business insights related to important marketing mixes or business operations or customer insights. You   must identify and discuss validity of your predictive analytics models (decision models) and its implications on your findings. You must use Dataset A (and optionally Dataset B) for this section. You can also include credible external data to your data models and analysis to enhance the robustness of your analysis. However, using Dataset B or external data is not mandatory in this section. In addition to the quality of data models, quality of argument construction coupled with visualisation will also be important considerations. Appropriate analytics and visualisation software must be utilised to perform. this task. [40%]

2. Digital Marketing: as part of this section, you are expected to develop or identify at least 4 key KPIs (descriptive or predictive analytics) that will help the manager understand web and digital marketing performance of the company. You must use Dataset B for this section focused on digital analytics. [20%]

3. Textual/Sentiment Analysis: as part of this section you are expected to conduct sentiment/textual analysis based on data collected from a competitors social media platform. You must focus on generating insights from consumer brand sentiments that could inform. strategic thinking for New-Ark Shoes Ltd. [10%]

4. Recommendations: as part of this section, you are expected to develop strategic recommendations based on all your previous analyses (in parts 1,2 & 3 above). You must also include recommendations on how the company can improve their data management and analytics strategy and apply Big Data concepts to improve their business performance. [20%]

5. Organisation & Presentation: 10% is dedicated towards overall structure, organisation and presentation of the report. A clear and organised report structure along with professional presentation standards will determine the level of mark awarded under this section. [10%]

Total Mark: 100

Due to lack of technical knowledge your manager cannot give you any specific advice on what type of predictive models to develop and what type of analysis to carry out. He believes that as an expert you can make that judgement and present data models that will help him understand the future of the business. You manager has made historic data available to you as Dataset A & Dataset B and recommends you carry out comprehensive predictive business analysis in addition to producing sound strategic recommendations.

2000-word report must be submitted via Turnitin link provided on Canvas.

Formative Feedback: formative feedbacks will be provided to students based on generic and individual questions during designated assignment support sessions. There will be dedicated assignment support sessions in addition to synchronous taught sessions.

What is excluded from the wordcount: Cover Page, Executive summary, Content list, Reference list, Appendices         

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值