基数排序注释

本文详细介绍了基数排序算法,一种稳定的非比较型整数排序算法。通过分析基数排序的实现过程,包括求最大位数、分配和收集步骤,展示了如何对整数数组进行排序而不破坏原有顺序。适用于大数据量排序场景。

基数排序是一种稳定排序所以每一次排序并不会破坏原有的同级大小关系
所以可以对每一位数分别排序最后将整个数组有序

int maxbit(int data[], int n) //辅助函数,求数据的最大位数
{
    int maxData = data[0];              ///< 最大数
    /// 先求出最大数,再求其位数,这样有原先依次每个数判断其位数,稍微优化点。
    for (int i = 1; i < n; ++i)
    {
        if (maxData < data[i])
            maxData = data[i];
    }
    int d = 1;
    int p = 10;
    while (maxData >= p)
    {
        maxData /= 10;
        ++d;
    }
    return d;
}

void radixsort(int data[], int n) //基数排序
{
    int d = maxbit(data, n);
    int *tmp = new int[n];
    int *count = new int[10]; //计数器
    int i, j, k;
    int radix = 1;
    for(i = 1; i <= d; i++) //进行d次排序
    {
        for(j = 0; j < 10; j++)
            count[j] = 0; //每次分配前清空计数器
        for(j = 0; j < n; j++)
        {
            k = (data[j] / radix) % 10; //统计每个桶中的记录数
            count[k]++;
        }
        for(j = 1; j < 10; j++)
            count[j] = count[j - 1] + count[j]; //将tmp中的位置依次分配给每个桶,用于后续分配每个数的位置,加起来后每个桶的数量减一就是他在数组中的下标
        for(j = n - 1; j >= 0; j--) //将所有桶中记录依次收集到tmp中
        {//从后面倒着赋值是为了维持稳定性,同级的数原本是什么位置依然不变
            k = (data[j] / radix) % 10;
            tmp[count[k] - 1] = data[j];//因为count统计的是数量所以存到数组里的下标要用数量减一
            count[k]--;
        }
        for(j = 0; j < n; j++) //将临时数组的内容复制到data中
            data[j] = tmp[j];
        radix = radix * 10;//从最小位开始每一位排序
    }
    delete []tmp;
    delete []count;
}
基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的Koopman算子的递归神经网络模型线性化”展开,旨在研究纳米定位系统的预测控制问题,并提供完整的Matlab代码实现。文章结合数据驱动方法与Koopman算子理论,利用递归神经网络(RNN)对非线性系统进行建模与线性化处理,从而提升纳米级定位系统的精度与动态响应性能。该方法通过提取系统隐含动态特征,构建近似线性模型,便于后续模型预测控制(MPC)的设计与优化,适用于高精度自动化控制场景。文中还展示了相关实验验证与仿真结果,证明了该方法的有效性和先进性。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事精密控制、智能制造、自动化或相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能控制设计;②为非线性系统建模与线性化提供一种结合深度学习与现代控制理论的新思路;③帮助读者掌握Koopman算子、RNN建模与模型预测控制的综合应用。; 阅读建议:建议读者结合提供的Matlab代码逐段理解算法实现流程,重点关注数据预处理、RNN结构设计、Koopman观测矩阵构建及MPC控制器集成等关键环节,并可通过更换实际系统数据进行迁移验证,深化对方法泛化能力的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值