文章目录
2月2日openai上线了第二个agent: deep research,具体功能类似24年11月google gemini发布的deep research。
技术原理
deep research 使用端到端强化学习,训练模型在不同领域推理和复杂浏览任务的能力;这种方法的核心原则是,模型学会自主规划和执行多步骤过程以找到相关数据,包括基于实时信息进行回溯和适应的能力。此过程允许模型处理诸如浏览用户上传的文件、生成和细化图形以及引用网络来源等任务。
类似开源项目
OpenDeepResearcher
开源地址:https://github.com/mshumer/OpenDeepResearcher
该项目侧重于用asyncio和aiohttp进行异步编程和请求响应,以此项目为例,具体进行深度研究的流程如下:
- 根据用户输入的研究主题,生成多个相关的query:
async def generate_search_queries_async(session, user_query):
"""
Ask the LLM to produce up to four precise search queries (in Python list format)
based on the user’s query.
"""
prompt = (
"You are an expert research assistant. Given the user's query, generate up to four distinct, "
"precise search queries that would help gather comprehensive information on the topic. "
"Return only a Python list of strings, for example: ['query1', 'query2', 'query3']."
)
messages = [
{
"role": "system", "content": "You are a helpful and precise research assistant."},
{
"role": "user", "content": f"User Query: {
user_query}\n\n{
prompt}"}
]
response = await call_openrouter_async(session, messages)
if response:
try:
# Expect exactly a Python list (e.g., "['query1', 'query2']")
search_queries = eval(response)
if isinstance(search_queries, list):
return search_queries
else:
print("LLM did not return a list. Response:", response)
return []
except Exception as e:
print("Error parsing search queries:", e, "\nResponse:", response

最低0.47元/天 解锁文章
6183

被折叠的 条评论
为什么被折叠?



