【GPT入门】第66 课 llamaIndex调用远程llm模型与embedding模型的方法
https://docs.llamaindex.org.cn/en/stable/api_reference/llms/openai_like/
1. 调用私有模型的方法
1. OpenAILike
OpenAILike 是对 OpenAI 模型的轻量级封装,使其兼容提供 OpenAI 兼容 API 的第三方工具。
官网:
https://docs.llamaindex.org.cn/en/stable/api_reference/llms/openai_like/
pip install llama-index-llms-openai-like
from llama_index.llms.openai_like import OpenAILike
llm = OpenAILike(
model="my model",
api_base="https://hostname.com/v1",
api_key="fake",
context_window=128000,
is_chat_model=True,
is_function_calling_model=False,
)
response = llm.complete("Hello World!")
print(str(response))
2. OpenAILikeEmbedding
https://docs.llamaindex.org.cn/en/stable/api_reference/embeddings/openai_like/
pip install llama-index-embeddings-openai-like
embedding = OpenAILikeEmbedding(
model_name="my-model-name",
api_base="https://:1234/v1",
api_key="fake",
embed_batch_size=10,
)
2. 调用公开平台的模型
2.1 调用GLM
参考官网:https://docs.bigmodel.cn/cn/guide/develop/http/introduction, 找到api_base,填入下面
from llama_index.llms.openai_like import OpenAILike
llm = OpenAILike(
model="glm-4",
api_base="https://open.bigmodel.cn/api/paas/v4/",
api_key="改为自己的key",
context_window=128000,
is_chat_model=True,
is_function_calling_model=False,
max_tokens=1024,
temperature=0.3,
)
response = llm.complete("我是星星之火,我不开心,开导我!")
print(str(response))
执行结果:

llamaIndex调用远程LLM与Embedding方法
662

被折叠的 条评论
为什么被折叠?



