#1038 : 01背包

本文介绍了一个经典的01背包问题的应用实例——奖券兑换问题。通过动态规划算法解决如何使用有限的奖券获得最大喜好值的奖品组合。文章提供了一种节省内存的一维数组实现方法。

时间限制: 20000ms
单点时限: 1000ms
内存限制: 256MB

描述

且说上一周的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了!

小Ho现在手上有M张奖券,而奖品区有N件奖品,分别标号为1到N,其中第i件奖品需要need(i)张奖券进行兑换,同时也只能兑换一次,为了使得辛苦得到的奖券不白白浪费,小Ho给每件奖品都评了分,其中第i件奖品的评分值为value(i),表示他对这件奖品的喜好值。现在他想知道,凭借他手上的这些奖券,可以换到哪些奖品,使得这些奖品的喜好值之和能够最大。

提示一:合理抽象问题、定义状态是动态规划最关键的一步

提示二:说过了减少时间消耗,我们再来看看如何减少空间消耗

输入

每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第一行为两个正整数N和M,表示奖品的个数,以及小Ho手中的奖券数。

接下来的n行描述每一行描述一个奖品,其中第i行为两个整数need(i)和value(i),意义如前文所述。

测试数据保证

对于100%的数据,N的值不超过500,M的值不超过10^5

对于100%的数据,need(i)不超过2*10^5, value(i)不超过10^3

输出

对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的总喜好值。

样例输入
5 1000
144 990
487 436
210 673
567 58
1056 897
样例输出
2099

经典01背包问题,这里卡内存,要求用一位数组解决问题。关键在于理解。以best(i, x)表示已经决定了前i件物品是否选取,当前已经选取的物品的所需奖券数总和不超过x时,能够获取的最高的喜好值的和。

best(N, M) = max{best(N - 1, M - need(N)) + value(N), best(N - 1, M)}!”这是传统的方法。

如果我按照j从M到1的顺序,也就是跟之前相反的顺序来进行计算的话。另外根据我们的状态转移方程,可以显然得出如果状态(iA, jA)依赖于状态(iB, jB),那么肯定有iA = iB+1, jA>=jB。所以不难得出一个结论:我在计算best(i, j)的时候,因为best(i, j+1..M)这些状态已经被计算过了,所以意味着best(i - 1, k),k=j..M这些值都没有用了——所有依赖于他们的值都已经计算完了。于是它们原有的存储空间都可以用来存储别的东西,所以我不仿直接就将best(i, j)的值存在best(i-1, j)原有的位置上。这样可以只开一位数组。

#include <iostream>
#include <string.h>
#include <cstdio>
#include <string>
#include <map>
#include <vector>
#include <queue>
#include <algorithm>
#include <set>
#include <math.h>
using namespace std;
int f[100005];
int need[505],value[505];
int main()
{
	int n,m;
	while(~scanf("%d%d",&n,&m))
	{
		memset(f,0,sizeof(f));
		for(int i=1;i<=n;i++)
		{
			scanf("%d%d",&need[i],&value[i]);
		}
		for(int j=0;j<=n;j++)
		{
			f[j]=0;
		}
		for(int i=1;i<=n;i++)
		{
			for(int j=m;j>=need[i];j--)
			{
				f[j]=max(f[j],f[j-need[i]]+value[i]);
			}
		}
		cout<<f[m]<<endl;
	}
}

内容概要:本文围绕EKF SLAM(扩展卡尔曼滤波同步定位与地图构建)的性能展开多项对比实验研究,重点分析在稀疏与稠密landmark环境下、预测与更新步骤同时进行与非同时进行的情况下的系统性能差异,并进一步探讨EKF SLAM在有色噪声干扰下的鲁棒性表现。实验考虑了不确定性因素的影响,旨在评估不同条件下算法的定位精度与地图构建质量,为实际应用中EKF SLAM的优化提供依据。文档还提及多智能体系统在遭受DoS攻击下的弹性控制研究,但核心内容聚焦于SLAM算法的性能测试与分析。; 适合人群:具备一定机器人学、状态估计或自动驾驶基础知识的科研人员及工程技术人员,尤其是从事SLAM算法研究或应用开发的硕士、博士研究生和相关领域研发人员。; 使用场景及目标:①用于比较EKF SLAM在不同landmark密度下的性能表现;②分析预测与更新机制同步与否对滤波器稳定性与精度的影响;③评估系统在有色噪声等非理想观测条件下的适应能力,提升实际部署中的可靠性。; 阅读建议:建议结合MATLAB仿真代码进行实验复现,重点关注状态协方差传播、观测更新频率与噪声模型设置等关键环节,深入理解EKF SLAM在复杂环境下的行为特性。稀疏 landmark 与稠密 landmark 下 EKF SLAM 性能对比实验,预测更新同时进行与非同时进行对比 EKF SLAM 性能对比实验,EKF SLAM 在有色噪声下性能实验
内容概要:本文围绕“基于主从博弈的售电商多元零售套餐设计与多级市场购电策略”展开,结合Matlab代码实现,提出了一种适用于电力市场化环境下的售电商优化决策模型。该模型采用主从博弈(Stackelberg Game)理论构建售电商与用户之间的互动关系,售电商作为领导者制定电价套餐策略,用户作为跟随者响应电价并调整用电行为。同时,模型综合考虑售电商在多级电力市场(如日前市场、实时市场)中的【顶级EI复现】基于主从博弈的售电商多元零售套餐设计与多级市场购电策略(Matlab代码实现)购电组合优化,兼顾成本最小化与收益最大化,并引入不确定性因素(如负荷波动、可再生能源出力变化)进行鲁棒或随机优化处理。文中提供了完整的Matlab仿真代码,涵盖博弈建模、优化求解(可能结合YALMIP+CPLEX/Gurobi等工具)、结果可视化等环节,具有较强的可复现性和工程应用价值。; 适合人群:具备一定电力系统基础知识、博弈论初步认知和Matlab编程能力的研究生、科研人员及电力市场从业人员,尤其适合从事电力市场运营、需求响应、售电策略研究的相关人员。; 使用场景及目标:① 掌握主从博弈在电力市场中的建模方法;② 学习售电商如何设计差异化零售套餐以引导用户用电行为;③ 实现多级市场购电成本与风险的协同优化;④ 借助Matlab代码快速复现顶级EI期刊论文成果,支撑科研项目或实际系统开发。; 阅读建议:建议读者结合提供的网盘资源下载完整代码与案例数据,按照文档目录顺序逐步学习,重点关注博弈模型的数学表达与Matlab实现逻辑,同时尝试对目标函数或约束条件进行扩展改进,以深化理解并提升科研创新能力。
内容概要:本文介绍了基于粒子群优化算法(PSO)的p-Hub选址优化问基于粒子群优化算法的p-Hub选址优化(Matlab代码实现)题的Matlab代码实现,旨在解决物流与交通网络中枢纽节点的最优选址问题。通过构建数学模型,结合粒子群算法的全局寻优能力,优化枢纽位置及分配策略,提升网络传输效率并降低运营成本。文中详细阐述了算法的设计思路、实现步骤以及关键参数设置,并提供了完整的Matlab仿真代码,便于读者复现和进一步改进。该方法适用于复杂的组合优化问题,尤其在大规模网络选址中展现出良好的收敛性和实用性。; 适合人群:具备一定Matlab编程基础,从事物流优化、智能算法研究或交通运输系统设计的研究生、科研人员及工程技术人员;熟悉优化算法基本原理并对实际应用场景感兴趣的从业者。; 使用场景及目标:①应用于物流中心、航空枢纽、快递分拣中心等p-Hub选址问题;②帮助理解粒子群算法在离散优化问题中的编码与迭代机制;③为复杂网络优化提供可扩展的算法框架,支持进一步融合约束条件或改进算法性能。; 阅读建议:建议读者结合文中提供的Matlab代码逐段调试运行,理解算法流程与模型构建逻辑,重点关注粒子编码方式、适应度函数设计及约束处理策略。可尝试替换数据集或引入其他智能算法进行对比实验,以深化对优化效果和算法差异的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值