计算机毕业设计Hadoop+Hive广告推荐系统 广告预测 广告数据分析可视化 广告爬虫 大数据毕业设计 Spark Flink 深度学习 机器学习

广告数仓项目以广告主投放到媒体平台为业务基础,收集管理平台数据及媒体平台发送的广告曝光点击次数之后,进行数据分析与统计,最终实现可视化报表展示。

项目共分六大部分:广告业务详情介绍、数仓建模原理介绍、数仓集群部署和环境搭建、数仓数据分析及ETL完整流程、DolphinScheduler全流程调度、FineBI可视化大屏展示,是一套完整的数仓项目,学习者部署本地虚拟机即可实现全部项目流程。

教程介绍了媒体投放广告的详细流程,帮助学习者了解广告投放业务体系,掌握ETL流程中常用的技术手段。项目中使用的框架包括:Hadoop、Hive、Spark、Kafka、ClickHouse、DolphinScheduler、Flume、Datax、FineBI等。

核心算法代码分享如下:

# coding=utf-8
# 基于物品的协同过滤推荐

import random
import sys

import math
from operator import itemgetter

import pymysql
from rate import Rate
import db

"""
"""
class ItemBasedCF():
    # 初始化参数
    def __init__(self):
        self.n_sim_movie = 8
        self.n_rec_movie = 4

        self.trainSet = {}
        self.testSet = {}

        self.movie_sim_matrix = {}
        self.movie_popular = {}
        self.movie_count = 0

        print('Similar movie number = %d' % self.n_sim_movie)
        print('Recommneded movie number = %d' % self.n_rec_movie)

    def get_dataset(self, pivot=0.75):
        trainSet_len = 0
        testSet_len = 0
        # sql = ' select * from tb_rate'
        results = db.session.query(Rate).all()
        # print(results)
        for item in results:
            user, movie, rating = item.uid, item.iid, item.rate
            self.trainSet.setdefault(user, {})
            self.trainSet[user][movie] = rating
            trainSet_len += 1
            self.testSet.setdefault(user, {})
            self.testSet[user][movie] = rating
            testSet_len += 1
        # cnn.close()
        # db.session.close()

        print('Split trainingSet and testSet success!')
        print('TrainSet = %s' % trainSet_len)
        print('TestSet = %s' % testSet_len)

    # 读文件,返回文件的每一行
    def load_file(self, filename):
        with open(filename, 'r') as f:
            for i, line in enumerate(f):
                if i == 0:  # 去掉文件第一行的title
                    continue
                yield line.strip('\r\n')
        print('Load %s success!' % filename)

    # 计算电影之间的相似度
    def calc_movie_sim(self):
        for user, movies in self.trainSet.items():
            for movie in movies:
                if movie not in self.movie_popular:
                    self.movie_popular[movie] = 0
                self.movie_popular[movie] += 1

        self.movie_count = len(self.movie_popular)
        print("Total movie number = %d" % self.movie_count)

        for user, movies in self.trainSet.items():
            for m1 in movies:
                for m2 in movies:
                    if m1 == m2:
                        continue
                    self.movie_sim_matrix.setdefault(m1, {})
                    self.movie_sim_matrix[m1].setdefault(m2, 0)
                    self.movie_sim_matrix[m1][m2] += 1
        print("Build co-rated users matrix success!")

        # 计算电影之间的相似性 similarity matrix
        print("Calculating movie similarity matrix ...")
        for m1, related_movies in self.movie_sim_matrix.items():
            for m2, count in related_movies.items():
                # 注意0向量的处理,即某电影的用户数为0
                if self.movie_popular[m1] == 0 or self.movie_popular[m2] == 0:
                    self.movie_sim_matrix[m1][m2] = 0
                else:
                    self.movie_sim_matrix[m1][m2] = count / math.sqrt(self.movie_popular[m1] * self.movie_popular[m2])
        print('Calculate movie similarity matrix success!')

    # 针对目标用户U,找到K部相似的电影,并推荐其N部电影
    def recommend(self, user):
        K = self.n_sim_movie
        N = self.n_rec_movie
        rank = {}
        if user > len(self.trainSet):
            user = random.randint(1, len(self.trainSet))
        watched_movies = self.trainSet[user]

        for movie, rating in watched_movies.items():
            for related_movie, w in sorted(self.movie_sim_matrix[movie].items(), key=itemgetter(1), reverse=True)[:K]:
                if related_movie in watched_movies:
                    continue
                rank.setdefault(related_movie, 0)
                rank[related_movie] += w * float(rating)
        return sorted(rank.items(), key=itemgetter(1), reverse=True)[:N]

    # 产生推荐并通过准确率、召回率和覆盖率进行评估
    def evaluate(self):
        print('Evaluating start ...')
        N = self.n_rec_movie
        # 准确率和召回率
        hit = 0
        rec_count = 0
        test_count = 0
        # 覆盖率
        all_rec_movies = set()

        for i, user in enumerate(self.trainSet):
            test_moives = self.testSet.get(user, {})
            rec_movies = self.recommend(user)
            for movie, w in rec_movies:
                if movie in test_moives:
                    hit += 1
                all_rec_movies.add(movie)
            rec_count += N
            test_count += len(test_moives)

        precision = hit / (1.0 * rec_count)
        recall = hit / (1.0 * test_count)
        coverage = len(all_rec_movies) / (1.0 * self.movie_count)
        print('precisioin=%.4f\trecall=%.4f\tcoverage=%.4f' % (precision, recall, coverage))

    def rec_one(self,userId):
        print('推荐一个')
        rec_movies = self.recommend(userId)
        # print(rec_movies)
        return rec_movies

# 推荐算法接口
def recommend(userId):
    itemCF = ItemBasedCF()
    itemCF.get_dataset()
    itemCF.calc_movie_sim()
    reclist = []
    recs = itemCF.rec_one(userId)
    return recs

if __name__ == '__main__':
    #param1 = sys.argv[1]
    param1 = "2"
    result = recommend(int(param1))
    list = []
    for r in result:
        list.append(dict(iid=r[0], rate=r[1]))
    print(list)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值