Leetcode 209. 长度最小的子数组

题目209是中等难度的LeetCode问题,要求找到数组中使得和大于等于目标值的最小子数组长度。文章提供了两种解题方案,一种时间复杂度为O(N),另一种为O(NlgN)。第一种方法使用双指针,空间复杂度为O(1),能取得较好的解决方案。后续提出了更高时间复杂度要求的解题思路。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

209. 长度最小的子数组

难度: Medium

刷题内容

原题连接

  • https://leetcode.com/problems/minimum-size-subarray-sum/description/

内容描述

Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.

Example: 

Input: s = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: the subarray [4,3] has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n). 

解题方案

思路 1
- 时间复杂度: O(N)******- 空间复杂度: O(1)

双指针走起,beats 98.40%

class Solution(object):
    def minSubArrayLen(self, s, nums):
        """
        :type s: int
        :type nums: List[int]
        :rtype: int
        """
        start, end, sums, res = 0, 0, 0, sys.maxsize
        while end < len(nums):
            sums += nums[end]
            end += 1
            while sums >= s:
                sums -= nums[start]
                start += 1
                res = min(res, end-start+1)
        return res if res != sys.maxsize else 0

Follow up:

If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).

思路 1
- 时间复杂度: O(NlgN)******- 空间复杂度: O(N)

思路参考Approach #3

from bisect import bisect_left
class Solution(object):
    def minSubArrayLen(self, s, nums):
        """
        :type s: int
        :type nums: List[int]
        :rtype: int
        """
        res = sys.maxsize
        sums = [0] * (len(nums)+1)
        for i in range(1, len(nums)+1):
            sums[i] = sums[i-1] + nums[i-1] # Sum of first i elements
        for i in range(1, len(nums)+1):
            to_find = s + sums[i-1] # minimum subarray starting from index i to have sum greater than s
            idx = bisect_left(sums, to_find)
            if idx != len(sums):
                res = min(res, idx-i+1)
        return res if res != sys.maxsize else 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值