机器学习基石笔记 Lecture 2: Learning to Answer Yes/No

本文深入探讨了感知器学习算法的基本原理,通过数学公式详细解释了感知器如何逐步调整权重以实现对线性可分数据集的学习过程。此外,还讨论了在噪声数据下学习的挑战,并介绍了口袋算法作为解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lecture 2: Learning to Answer Yes/No


QQ截图20151219201921.png-90.7kB

Perceptron

A Simple Hypothesis Set: the ‘Perceptron’

QQ截图20151213110730.png-105.9kB

感知器类比神经网络,threshold类比考试60分及格

Vector Form of Perceptron Hypothesis

QQ截图20151213110839.png-50.7kB
each ‘tall’ W represents a hypothesis h & is multiplied with ‘tall’ X —will use tall versions to simplify notation

Perceptrons in R2

QQ截图20151213111118.png-83kB

Fun time

QQ截图20151213111157.png-109kB

Select g from H

遍历是不现实的,所以还是迭代吧
QQ截图20151213111442.png-76kB

Perceptron Learning Algorithm

A fault confessed is half redressed.

QQ截图20151213111711.png-95.3kB
因为wTtxn(t)=wtxn(t)cos(wt,xn(t)),所以当二者夹角大于90°的时候,内积为-,反之为+

Fun time

QQ截图20151213113247.png-72.3kB

说明了什么含义 为什么不对?

Implementation

QQ截图20151213112600.png-58.8kB
start from some w0 (say, 0,并不是随机的初始化), and ‘correct’ its mistakes on D next can follow naïve cycle (1, · · · , N) or precomputed random cycle
QQ截图20151213112944.png-11.8kB
QQ截图20151213112901.png-12.8kB
QQ截图20151213112914.png-22.1kB

(note: made xix0=1 for visual purpose) Why ?

Issues of PLA

QQ截图20151213113143.png-57.9kB

Linear Separability

QQ截图20151213113358.png-79.9kB
assume linear separable D,does PLA always halt?

halts!

QQ截图20151213113746.png-55.8kB
QQ截图20151213113644.png-21.5kB
因为 wTfwTwfwT<=1,所以T肯定有上限

PLA Fact: wt Gets More Aligned with wf

QQ截图20151213113958.png-60.7kB

wt appears more aligned with wf after update really?

PLA Fact: wt Does Not Grow Too Fast
QQ截图20151213114134.png-77.4kB
QQ截图20151213114248.png-67.4kB

wTfwTwTfwT1+minnynwTfxnwfw0+TminnynwTfxnTminnynwTfxnρTwf2(A)

wT2wT12+maxnynxnw02+Tmaxynxn2Tmaxynxn2TR2(B)

推导过程中需要注意的是,w0=0,然后将(A)(B)代入即可得答案为

得到是上限,而且无法准确求出,因为wf未知
即使w00也是能证明有上限的

特性

QQ截图20151213120920.png-68.1kB

Learning with Noisy Data

NP难问题
QQ截图20151213121021.png-83.9kB

Pocket Algorithm

modify PLA algorithm (black lines) by keeping best weights in pocket
QQ截图20151213121151.png-75.6kB

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值