机器学习基石笔记 Lecture 3 - Types of Learning

本文详细探讨了机器学习的不同类型,包括二分类、多类分类、回归和结构化学习等输出空间问题;监督、无监督、半监督及强化学习等标签类型;批量学习、在线学习和主动学习的协议差异;以及具体特征、原始特征、抽象特征等输入空间的学习挑战。通过实例解析了不同学习场景的应用和特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Lecture 3 - Types of Learning


QQ截图20151215125659.png-119.2kB

Learning with Different Output Space Y

QQ截图20151215121810.png-74.2kB

binary classification

core and important problem with many tools as building block of other tools
QQ截图20151215115949.png-44.2kB

Multiclass Classification

many applications in practice,especially for ‘recognition’
QQ截图20151215120141.png-86.7kB
QQ截图20151215120226.png-64.5kB

Regression

also core and important with many ‘statistical’tools as building block of other tools
QQ截图20151215121104.png-93.3kB
QQ截图20151215121129.png-37.3kB

Structured Learning

a fancy but complicated learning problem
可以看作大规模的多分类问题,但是没有明确的类定义
QQ截图20151215121329.png-109.5kB
QQ截图20151215121417.png-40.5kB

Learning with Different Data Label yn

QQ截图20151215123548.png-67.1kB

Supervised

every xn comes with corresponding yn
QQ截图20151215121937.png-18kB

Unsupervised

Learning without yn
unsupervised multiclass classification ‘clustering’
QQ截图20151215122354.png-20.5kB
QQ截图20151215122312.png-33.4kB
QQ截图20151215122510.png-155.7kB

Semi-supervised

semi-supervised learning: leverage unlabeled data to avoid ‘expensive’ labeling
由于标记成本比较高,或者说根本就没有这么多标记
QQ截图20151215122632.png-65kB
QQ截图20151215122952.png-54.8kB

Reinforcement Learning

a ‘very different’ but natural way of learning reinforcement: learn with ‘partial/implicit information’ (often sequentially)
训练机器,好比训练一条狗,哈哈,好好玩
QQ截图20151215123119.png-250.5kB
QQ截图20151215123449.png-238.6kB
QQ截图20151215123227.png-67.4kB

增强学习我了解的太少了,具体怎么反馈的??

Learning with Different Protocol f(xn,yn)

QQ截图20151215124422.png-63.3kB

Batch Learning

a very common protocol,learn from all known data

Online

最开始一点数据也不要
QQ截图20151215124037.png-91kB
QQ截图20151215124146.png-55.1kB

Active Learning

Learning by ‘Asking’,相当于我们高中自习的时候,有问题问老师
improve hypothesis with fewer labels (hopefully) by asking questions strategically
QQ截图20151215124243.png-63.8kB
A photographer has 100, 000 pictures, each containing one baseball
player. He wants to automatically categorize the pictures by its player inside. He starts by categorizing 1, 000 pictures by himself, and then writes an algorithm that tries to categorize the other pictures if it is ‘confident’ on the category while pausing for (& learning from) human input if not. What protocol best describes the nature of the algorithm?

Learning with Different Input Space X

对人来说,越抽象的特征,越难理解,对于机器来说,也是越难学习
QQ截图20151215125538.png-72.8kB

concrete features

each dimension of XRd represents ‘sophisticated physical meaning’,the ‘easy’ ones for ML
More on Concrete Features:
QQ截图20151215124958.png-64.5kB

Raw Features

image pixels, speech signal, etc.often need human or machines
to convert to concrete ones
QQ截图20151215125219.png-128.5kB

Abstract Features

again need ‘feature conversion/extraction/construction’
QQ截图20151215125413.png-102.3kB
QQ截图20151215125441.png-48.4kB

fun time

QQ截图20151215125632.png-98.6kB

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值