One Chance To Be The God Of Chrysanthemum

本文介绍了一道名为“菊花神”的算法题目,旨在寻找一个数集,使得从1到n的所有整数均可由该集合中若干数的和表示。文章详细解析了递归算法,并附带实现代码,用于生成满足条件的最小集合。
One Chance To Be The God Of Chrysanthemum
Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other)
Total Submission(s) : 59   Accepted Submission(s) : 3
Font: Times New Roman | Verdana | Georgia 
Font Size: ← →

Problem Description

  Last week xysDavid had gone for an interview. The interviewer asked him a funny question. Here is it.
  Given a number n, your mission is to find a set, that every number between 1 and n (inclusive) can be the sum of some elements in this set.
  xysDavid seckilled it soon after reading the statement. If you can solve the problem too, xysDavid will accept you to be his apprentice, who can get the honorary title 'the god of chrysanthemum'.
  Can you finish it?

Input

  There is a number T (1<=T<=50) in the first line, indicating the number of test cases.
  There is a number n in each line. (1<=n<=10^18);

Output

  You should output "Case #D:" first, which "D" means the index of the test case.
  Then output all the numbers in the set in one line in increasing order. Use one space to separate two numbers. Please note that no more spaces in the end of a line.
  If there are multiple answers, output the one with smallest number of elements. If it is still a tie, output the one with the smallest lexicographical order.
  The comparison between two sequences uses lexicographical ordering: first, the first two numbers are compared, and if they differ this determines the outcome of the comparison; if they are equal, the next two numbers are compared, and so on, until either sequence is exhausted. If all numbers of two sequences compare equal, the sequences are considered equal. If one sequence is an initial subsequence of the other, the shorted sequence is considered the smaller one.

Sample Input

2
1
3

Sample Output

Case #1:
1
Case #2:
1 2

Source

华南师范大学2012年ACM程序设计竞赛(初赛+决赛无尽版)

 

二分的思想

题意是:得到一个集合,使1到n都能用该集合内的某些元素和来表示。如果求得的集合有多个,输出元素个数最少的一个,如果还是有,输出字典序最小的集合。

 

#include<iostream>
#include<cstdio>
#include<set>
using namespace std;
#define LL __int64

set<LL> q;
set<LL>::iterator it;

LL solve(LL n) 
{
	if(n==1)
	{
		q.insert(1);
		return 1;
	}
	else
	{
		LL a=solve(n>>1);//a以下的数都能表示 
		LL b=n-a;//剩下的数b 
		while(q.count(b))//找到不重复的最小值 
		{
			b++;
		}
		q.insert(b);
		return b+a;//返回a+b以下都能表示 
	}
}

int main()
{
	int t;
	int cnt=1;
	cin>>t;
	while(t--)
	{
		LL n;
		cin>>n;
		q.clear();
		printf("Case #%d:\n",cnt++);
		solve(n);
		
		it=q.begin();
		printf("%I64d",*it);
		for(it++;it!=q.end();it++)
			printf(" %I64d",*it);
		cout<<endl;
	}
	return 0;
} 


 

六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,详细介绍了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程的理论与Matlab代码实现过程。文档还涵盖了PINN物理信息神经网络在微分方程求解、主动噪声控制、天线分析、电动汽车调度、储能优化等多个工程与科研领域的应用案例,并提供了丰富的Matlab/Simulink仿真资源和技术支持方向,体现了其在多学科交叉仿真与优化中的综合性价值。; 适合人群:具备一定Matlab编程基础,从事机器人控制、自动化、智能制造、电力系统或相关工程领域研究的科研人员、研究生及工程师。; 使用场景及目标:①掌握六自由度机械臂的运动学与动力学建模方法;②学习人工神经网络在复杂非线性系统控制中的应用;③借助Matlab实现动力学方程推导与仿真验证;④拓展至路径规划、优化调度、信号处理等相关课题的研究与复现。; 阅读建议:建议按目录顺序系统学习,重点关注机械臂建模与神经网络控制部分的代码实现,结合提供的网盘资源进行实践操作,并参考文中列举的优化算法与仿真方法拓展自身研究思路。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值