模式分类(原书第2版) 内容简介

本书深入探讨模式分类技术,包括贝叶斯决策论、最大似然估计、非参数技术和线性判别函数等内容。通过详细解释各种算法和技术,为读者提供全面的理解。涵盖从基本概念到高级应用的所有方面。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

模式分类(原书第2版) 本书目录

出版者的话
专家指导委员会
译者序
前言
第1章 绪论
1.1 机器感知
1.2 一个例子
1.3 模式识别系统
1.4 设计循环
1.5 学习和适应
1.6 本章小结
全书各章概要
文献和历史评述
参考文献
第2章 贝叶斯决策论
2.1 引言
2.2 贝叶斯决策论——连续特征
2.3 最小误差率分类
2.4 分类器、判别函数及判定面
2.5 正态密度
2.6 正态分布的判别函数
2.7 误差概率和误差积分
2.8 正态密度的误差上界
2.9 贝叶斯决策论——离散特征
2.10 丢失特征和噪声特征
2.11 贝叶斯置信网
2.12 复合贝叶斯决策论及上下文
本章小结
文献和历史评述
习题
上机练习
参考文献
第3章 最大似然估计和贝叶斯参数估计
第4章 非参数技术
第5章 线性判别函数
第6章 多层神经网络
第7章 随机方法
第8章 非度量方法
第9章 独立于算法的机器学习
第10章 无监督学习和聚类
附录A 数学基础
参考文献
索引
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值