Interrupt gates and Trap gates(May 21)

本文介绍了处理器如何通过不同类型的门描述符提供对不同权限级别代码段的受控访问。主要探讨了调用门、陷阱门、中断门和任务门的功能及使用场景,并详细解释了在执行异常或中断处理程序时堆栈切换的过程。
To provide controlled access to code segments with different privilege levels, the processor provides special set of descriptors called gate descriptors. There are four kinds of gate descriptors:

• Call gates

• Trap gates

• Interrupt gates

• Task gates


An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs in the context of the currently executing task. The segment selector for the gate points to a segment descriptor for an executable code segment in either the GDT or the current LDT. The offset field of the gate descriptor points to the beginning of the exception- or interrupt-handling procedure.


When the processor performs a call to the exception- or interrupt-handler procedure:

• If the handler procedure is going to be executed at a numerically lower privilege level, a stack switch occurs. When the stack switch occurs:

a. The segment selector and stack pointer for the stack to be used by the handler are obtained from the TSS

for the currently executing task. On this new stack, the processor pushes the stack segment selector and

stack pointer of the interrupted procedure.

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on the new stack 

c. If an exception causes an error code to be saved, it is pushed on the new stack after the EIP value.

• If the handler procedure is going to be executed at the same privilege level as the interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the current stack 

b. If an exception causes an error code to be saved, it is pushed on the current stack after the EIP value.


To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction. The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL is less than or equal to the IOPL. If a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted procedure’s stack on the return.
基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于提升系统在存在不确定性与扰动情况下的控制性能与稳定性。该模型结合实时迭代优化机制,增强了传统NMPC的数值鲁棒性,并通过双模控制策略兼顾动态响应与稳态精度,适用于复杂非线性系统的预测控制问题。文中还列举了多个相关技术方向的应用案例,涵盖电力系统、路径规划、信号处理、机器学习等多个领域,展示了该方法的广泛适用性与工程价值。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造、机器人控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于非线性系统的高性能预测控制设计,如电力系统调度、无人机控制、机器人轨迹跟踪等;②解决存在模型不确定性、外部扰动下的系统稳定控制问题;③通过Matlab仿真验证控制算法的有效性与鲁棒性,支撑科研论文复现与工程原型开发。; 阅读建议:建议读者结合提供的Matlab代码进行实践,重点关注NMPC的实时迭代机制与双模切换逻辑的设计细节,同时参考文中列举的相关研究方向拓展应用场景,强化对数值鲁棒性与系统稳定性之间平衡的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值