GPU Bugs for Neural Network Training

部署运行你感兴趣的模型镜像

1. NCCL unhandled cuda error

问题:

RuntimeError: NCCL error in: /opt/conda/conda-bld/pytorch_1565272271120/work/torch/lib/c10d/ProcessGroupNCCL.cpp:290, unhandled cuda error
Traceback (most recent call last):

subprocess.CalledProcessError: Command ‘[’/home/user3/anaconda3/envs/open-mmlab/bin/python’, ‘-u’, ‘./tools/test.py’, ‘–local_rank=2’, ‘configs/collin/dcn/faster_rcnn_dconv_c3-c5_r50_fpn_1x–hrrsd.py’, ‘work_dirs/faster_rcnn_dconv_c3-c5_r50_fpn_1x–hrrsd/epoch_12.pth’, ‘–launcher’, ‘pytorch’, ‘–out’, ‘work_dirs/faster_rcnn_dconv_c3-c5_r50_fpn_1x–hrrsd/results.pkl’, ‘–show’]’ returned non-zero exit status 1.

解决:
修改可视的GPU,且必须保证这些GPU上没有任何其他程序运行。

export CUDA_VISIBLE_DEVICES=0,5,6

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

### 关于深度伪造检测器中的水印作为漏洞及其对主动取证的影响 在探讨深度伪造技术的安全性和可靠性时,一个重要议题是嵌入式水印的作用与潜在风险。研究表明,在某些情况下,用于识别和验证媒体真实性的水印可能反而成为攻击者利用的对象[^1]。 #### 水印机制的局限性 传统意义上,水印被设计用来证明文件出处或版权归属。然而当应用于对抗性环境中时,这些特征可能会暴露模型内部结构的信息给恶意用户。具体来说: - **可逆工程**:如果攻击者能够理解并模仿合法生成过程,则可以绕过现有防御措施。 - **模式泄露**:特定类型的标记方式可能导致算法行为模式外泄,从而削弱整体安全性。 因此,简单依赖预设不变量(如固定位置或频率域特性)来构建防护体系存在固有缺陷[^2]。 #### 主动取证的新视角 面对上述挑战,研究人员提出了更加灵活且鲁棒的方法论——即所谓的“自适应取证”。这种方法强调通过动态调整策略以应对不断变化威胁环境的能力。其核心理念包括但不限于以下几个方面: - **多模态融合分析**:结合视觉、音频乃至文本等多种感知渠道进行全面评估; - **上下文敏感型判断**:考虑事件发生背景因素影响下的真实性判定标准; - **持续学习框架支持**:允许系统基于新样本自动更新参数配置而不需频繁重训整个网络架构。 这种转变不仅有助于克服静态方法容易遭受针对性破解的问题,也为未来开发更高效可靠的防伪工具奠定了理论基础[^3]。 ```python def adaptive_forensics_analysis(media_data, context_info=None): """ 实现一个多模态融合的自适应取证函数 参数: media_data (dict): 包含待检验多媒体数据的各种表示形式 context_info (list, optional): 提供额外辅助信息列表,默认为空 返回: dict: 综合评分结果与其他元数据分析结论 """ scores = {} # 对不同感官通道分别打分 visual_score = analyze_visual_features(media_data['image']) audio_score = analyze_audio_spectrogram(media_data.get('audio', [])) textual_score = evaluate_textual_consistency(media_data.get('text', "")) # 加权汇总得到最终得分 overall_score = sum([ 0.5 * visual_score, 0.3 * audio_score, 0.2 * textual_score ]) return { 'overall': overall_score, 'details': {k:v for k,v in locals().items() if isinstance(v,(int,float))} } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值