Minimum Inversion Number
描述
The inversion
number of a given number sequence a1, a2, ..., an is the number of
pairs (ai, aj) that satisfy i < j and ai
> aj.
For a given sequence of numbers a1, a2, ..., an, if we move the
first m >= 0 numbers to the end of the seqence, we
will obtain another sequence. There are totally n such sequences as
the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion
number out of the above sequences.
输入
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
输出
For each case, output the minimum inversion number on a single line.
样例输入
10
1 3 6 9 0 8 5 7 4 2
样例输出
16
题意: 在规定的变化序列中找出最少逆序对的个数.
解题思路:
代码:
#include
<cstdio>
#include <iostream>
#include <cstring>
using namespace std;
#define MAX 5005
int n;
int sum;
int minsize;
int a[MAX];
int
main()
{
}
本文介绍了一种算法,用于解决给定序列通过特定变换后得到的序列中逆序对数量最小的问题。该算法首先计算初始序列的逆序对数量,然后通过分析序列变换前后逆序对数量的变化规律,逐步迭代计算所有可能序列的逆序对数量,并最终确定出逆序对数量最小的序列。
5万+

被折叠的 条评论
为什么被折叠?



