20、企业移动与端点设备安全管理全解析

企业移动与端点安全管理

企业移动与端点设备安全管理全解析

1. 移动自组网的其他考量

在移动自组网中,有几个重要的流程需要我们进行深入考虑。

1.1 证书交换

加入网络的请求中,证书交换是关键的一环。证书被分配给设备,借助受信任的证书颁发机构(CA)实现身份验证。对于企业级安全(ELS)而言,证书通常存储在硬件中,比如硬件安全模块(HSM)或个人身份验证(PIV)卡。在进行低层交换时,设备的可信平台模块(TPM)是较为理想的存储位置。每台设备都配备了TPM或类似TPM的硬件证书与密钥存储系统,用于在必要时向网络或移动节点证明自身身份。

对于没有硬件存储功能的移动设备,可以使用派生凭证进行证书交换。这种派生凭证由企业内受信任的注册机构(RA)颁发,它与主凭证使用相同的原始认证。若主凭证因认证相关原因被撤销,派生凭证也会随之撤销,因为其认证已不再安全;但如果主凭证是因特定的凭证实例问题被撤销,派生凭证可能仍保持有效。派生凭证的撤销是否会导致主凭证的撤销,取决于具体的原因。

1.2 设备要求

允许加入企业网络的设备需经过企业注册和管理,并遵循相关使用限制。所有设备在硬件存储(最好是TPM)中都有公钥基础设施(PKI)证书(由CA颁发的PKI证书或派生证书)。在建立与端点设备管理服务的通道之前,设备和域控制器会进行基于PKI的双向相互认证。设备还可能包含一个或多个用户个人证书(由CA颁发的PKI证书或派生证书),这些证书在用户登录设备时会被激活。此外,设备可能需要在企业域中进行注册,并报告TPM的证明信息以及其他数据(如位置信息)。

加入网络并完成身份验证后,可能需要建立与远程网络的端点设备管理服务连接。这将提供一个IP层的

内容概要:本文介绍了一个基于多传感器融合的定位系统设计方案,采用GPS、里程计和电子罗盘作为定位传感器,利用扩展卡尔曼滤波(EKF)算法对多源传感器数据进行融合处理,最终输出目标的滤波后位置信息,并提供了完整的Matlab代码实现。该方法有效提升了定位精度稳定性,尤其适用于存在单一传感器误差或信号丢失的复杂环境,如自动驾驶、移动采用GPS、里程计和电子罗盘作为定位传感器,EKF作为多传感器的融合算法,最终输出目标的滤波位置(Matlab代码实现)机器人导航等领域。文中详细阐述了各传感器的数据建模方式、状态转移观测方程构建,以及EKF算法的具体实现步骤,具有较强的工程实践价值。; 适合人群:具备一定Matlab编程基础,熟悉传感器原理和滤波算法的高校研究生、科研人员及从事自动驾驶、机器人导航等相关领域的工程技术人员。; 使用场景及目标:①学习和掌握多传感器融合的基本理论实现方法;②应用于移动机器人、无人车、无人机等系统的高精度定位导航开发;③作为EKF算法在实际工程中应用的教学案例或项目参考; 阅读建议:建议读者结合Matlab代码逐行理解算法实现过程,重点关注状态预测观测更新模块的设计逻辑,可尝试引入真实传感器数据或仿真噪声环境以验证算法鲁棒性,并进一步拓展至UKF、PF等更高级滤波算法的研究对比。
内容概要:文章围绕智能汽车新一代传感器的发展趋势,重点阐述了BEV(鸟瞰图视角)端到端感知融合架构如何成为智能驾驶感知系统的新范式。传统后融合前融合方案因信息丢失或算力需求过高难以满足高阶智驾需求,而基于Transformer的BEV融合方案通过统一坐标系下的多源传感器特征融合,在保证感知精度的同时兼顾算力可行性,显著提升复杂场景下的鲁棒性系统可靠性。此外,文章指出BEV模型落地面临大算力依赖高数据成本的挑战,提出“数据采集-模型训练-算法迭代-数据反哺”的高效数据闭环体系,通过自动化标注长尾数据反馈实现算法持续进化,降低对人工标注的依赖,提升数据利用效率。典型企业案例进一步验证了该路径的技术可行性经济价值。; 适合人群:从事汽车电子、智能驾驶感知算法研发的工程师,以及关注自动驾驶技术趋势的产品经理和技术管理者;具备一定自动驾驶基础知识,希望深入了解BEV架构数据闭环机制的专业人士。; 使用场景及目标:①理解BEV+Transformer为何成为当前感知融合的主流技术路线;②掌握数据闭环在BEV模型迭代中的关键作用及其工程实现逻辑;③为智能驾驶系统架构设计、传感器选型算法优化提供决策参考; 阅读建议:本文侧重技术趋势分析系统级思考,建议结合实际项目背景阅读,重点关注BEV融合逻辑数据闭环构建方法,并可延伸研究相关企业在舱泊一体等场景的应用实践。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值